치환해서 극한값 구하는거 외워야됨?
이 문젠데왜 치환하는지도 모르겠고 이해가 잘 안감... 2번 풀이처럼 푸는 거 외워야됨?
수렴하는 극한값을 bn이라는 수열로 치환한다음 an을 bn으로 표현해서 수렴렴렴 계산산산 한다는 아이디어인가?
강의에서도 안알려줘서...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
등장
-
교대 군휴학 2
1학년 1학기에 바로 군대 가도 되나요 빨리 갔다오고 교사 일을 쭉 이어서 하고...
-
여기 군필 있나? 14
군대 존나 힘들거같아서 의대갔는데 운동열심히 해놓으면 차라리 그냥 입대하는게 나음?...
-
현역 공통 3~4개 틀림 고3 집모 국어 2 영어3 생지 22 고정임
-
Sin값 √5/2는 어떻게 검토하는데 아무도 못찾은거지.. 당연히 내가 틀린줄 알고...
-
여기 일반인이 살아도 관리비나 이런거 지장 없고 걍 아파트랑 비슷한가요?
-
5회 풀었는데 이것또한 등급컷을 못찾음
-
히히 8
오줌발싸
-
행복해
-
동정 23년차 2
동정하지마세요
-
걍 다 때려치고 3학년 1학기만 고생하고 싶다
-
해외여행 이미 준비 다 마쳐놓은 상태로 수강신청 날짜 확인 해보니까 돌아오는...
-
배그 롤 옵치보다 재미없는듯 에임은 배그급으로 중요하고 스킬은 옵치처럼 적당히...
-
동정 25년차 17
이런 젊은것들..
-
자전(국캠) 최초합했고 경영은 추합할 것 같은데 나군 떨어지면 둘 중 하나 골라야...
-
음탕한 함수년 미분해버리기
-
재미 JOAT 2
국어, 영어, 한국사 재미 GOAT 수학, 물리, 경제
-
국어포함 2합4 허수는 너무 불안하오 ㅠㅠㅠㅠㅠㅠㅠ 예전엔 최저 없었다던데 왜 생긴거야
-
04년생 22살. 23수능 63442 수능 망했는데 최저없는학종으로 나쁘지 않게...
-
홍대 불어랑 숭실대 경영 붙엇는데 어디 갈까요
-
올릴까 말까. 밑에 투표 상관없이 이글이 좋아요 10개 이상이면 올림. 심심한...
-
음함수 미분 문제를 풀때 한 변수에 대해 다른 변수들을 미분해야할때 변수인것과...
-
사실뉴런자체가 명성에 비해 그리 크리티컬한 강좌는 아닌 듯
-
다시 볼까
-
이번년도에 그렇게 나올 가능성은 없겠죠..?
-
이 문젠데왜 치환하는지도 모르겠고 이해가 잘 안감... 2번 풀이처럼 푸는 거...
-
이게 맞나....? 친구 22살임
-
조교 지원 완. 5
제발 조교 붙게 해주세요 ㅠㅠ
-
...어? 3
풀업 해야되는데 왜 손잡이가 올라갔냐 나 저거 내릴줄 모르는데;;
-
보통 영어 80점대 초반 나오는데 이 정도면 700 금방 나옴? 글고 그냥 토익책...
-
안녕하세요 8
-
창문 열린건 어케 알았을까
-
쌓여있잖야 4
너
-
이거 충분함? 12
헬스장 가면 준비운동 하고 기구 10개 100회씩하고 런닝머신 30분 타고 나오는데...
-
시계는 9
애플워치쓰는데
-
군대가고싶다 4
가끔그립단말이지
-
hmm… 3
뭔가 도르마무?
-
전한길 “우리법연구회 소속 헌재 재판관 ‘제2의 을사오적’ 될 것” 3
대구 국가비상기도회 참석 “윤대통령 지지율 곧 60% 넘을 것 국민 뜻 거역하고...
-
단국대 합격생을 위한 노크선배 꿀팁 [단국대25][자취 정보] 0
대학커뮤니티 노크에서 선발한 단국대 선배가 오르비에 있는 예비 단국대학생,...
-
아..
-
소화가 안됨... 너무 시끄러워서 그런가
-
10cm 서랍 4
이거 왤케 아련하냐 노래 개좋네 진짜
-
티셀의 야심작 단돈 22만원 미요타 9015를 달고는 절대 나올 수 없는 가격...
-
이거 어케 읽음 6
-
대학을 안 가보니까 뭐 일정이 어케된느지 감이 안 오는데 몇시쯤 잡으시나용..
-
맨날 농담으로 꺼라꺼라하니까 진짜 본인이 아니라고 생각하는거노!!
-
근성과 집념
? 뉴런에 진짜 안나와요?
저거 킥오프에요
수렴렴렴 계산산산 다 따라하는구나
뉴런 들었어서 뇌리에 박힘요 ㅋㅋㅋㅋ
걍 1번처럼만 풀어도 상관없을듯
근데 또 엄밀한거 좋아해서
저건 너무 야매인데 2번 풀이는 너무 어려운?
누가 2번처럼 풀이 쓰라고 시키면 막힘없이 쓸 줄 아는 실력 만들어두고
실전에서 1번처럼 하셔야합니다
이게맞다
아 그게 정배군요 감사합니다
차이는... 없긴 해요
근데 위에는 그냥 야매로 빠르게 풀 수 있는데,
아래는 발상이 잘 떠오르지도 않고 왜 치환해야되는지 이해가 잘 안가서요.
지금처럼 단순한 꼴에서는 무조건 1번으로 풀어야하지만
복잡한 꼴로 문제가 주어지면 2번으로 접근하는 방법도 생각해야 한다라는 김기현T의 생각이 녹아있는 것 같네요
아하 그렇군요 정말 감사합니다
근데 대충 본문에 써둔 걸로 이해하고 아래 풀이도 공부해야겠네요...
대충 분모분자에 극한 나누어주면 계산 빠르게 되지 않나요
분모 분자에 뭘로 나눠야 하나요?
그냥 수열 an 띡 하고 준거라
분모분자 모두 0으로 수렴하지 않으니까 위 아래 둘다 리미트 씌워서 계산하면 되지 않나요
0/0꼴에서 수렴값이 16/7이 나올 수도 있는 거 아닌가요? 전 분모 분자 수렴성이 확실하지 않아서 리미트 쪼개는게 불가능하다고 생각하거든요.
쪼개면 안 됩니다 원래
근데 제가 말씀드렸듯이 쟤는 상수곱과 상수 덧셈으로 구성한 거라 0/0이 나올 수 없어서 쪼개도 됩니다
정말 감사합니다 사랑합니다
둘이 0/0꼴이 안되니까 가능하죠
이해했읍니다 감사합니다
수능은 저렇게 풀면 멍청한 거고 내신 서술형에선 저렇게 풀어야 합니다.
아래에서 치환을 해야 하는 이유는 어떤 수렴하는 수열 a_n 과 b_n에 대하여 이것들의 사칙연산으로 만들어낸, 또는 상수의 곱 혹은 덧셈/뺄셈으로 만들어낸 수열이 수렴하며 그 극한값은 기존 극한값에 해당하는 연산을 취한 것과 같다는 것이 알려진 사실인데, 저기서 주어진 합성 수열의 극한값으로는 a_n이라는 수열에 대한 정보를 직접적으로 얻을 수가 없습니다. (사실 유리함수처럼 만들어서 어떻게어떻게 비벼볼 수는 있는데 그게 치환하는 거랑 다를 바가 없습니다.) 그래서 치환을 통해 a_n을 수렴하는 수열 b_n에 사칙연산을 적용해서 만든 수열로 간접적으로 구성하여 보는 겁니다. 우리가 아는 것, 즉 전제로 주어진 사실들만 사용해야 하니까요.
다만 주어진 상황에서 극한값 lim (5a_n - 2)이 존재한다고 가정을 하는 것이 가능하므로, a_n의 극한값 역시 존재하며 당연하게도 그것의 사칙연산으로 만들어낸 수열인 (2a_n +1)/(4a_n-3)의 극한도 존재함과 동시에 그 극한값을 a_n의 극한값을 alpha로 두고 상응하는 사칙연산을 취하여 구할 수 있습니다. 이런 풀이가 수능에서는 가장 일반적입니다.
엄밀함을 요구한다면 치환 없이 푸는 풀이는 0점이라고 보면 됩니다.
선생님 정말 정성스러운 답변 감사합니다.
다만 의문점이 하나 있는데, an의 극한값을 알파로 두고 사칙연산을 한다고 할때,
(2an + 1)/(4an - 3)이 0/0꼴이라면 극한을 쪼개서 계산하는게 불가능하지 않나요?
애초에 an의 극한값을 알파로 두고 사칙연산을 하는 것부터 엄밀함과는 거리가 멀지만 궁금해서 여쭤봅니다.
a_n의 극한이 존재한다고 가정했을 때
애초에 식의 형태 상 분자 분모가 둘 다 0일 수는 없고, 분모 또는 분자만 0인 것도 불가능합니다. 값이 0이 아닌 실수로 나온다는 것이 원래 전제이고 alpha를 사용하는 것은 우리가 쌈마이로 도입한 전제니까요.
아 그렇네요 정말 감사합니다!