킬캠 시즌 1 3회차 후기
틀린문항: 30
1,2회에 비해 준킬러가 조금 가벼운 느낌의 시험지라고 생각
그럼에도 어려웠고 계산도 엄청 절었음
6번: x축과 이루는 각이 예각이라는 고정관념에 빠져서 문제조건이 어떻게 이렇게 주어진거지? 라고 혼자 이상한 상상을 함. 넘겼다가 2트때 차분히 다시풀음
9번: a1a2에서 a3a4로 넘어갈 때 r^2만 곱해주면 되는줄 알고 계속 착각함. 여러번 풀다가 넘기고 2트때 돌아와서 차분히 다시 풀음
거의 한 4번은 풀은듯
10번: 좌극한, 우극한 나눠 조건 뽑기. 식 3개 미지수 3개 이므로 계산
11번: 삼각함수 그래프 그려서 차분히 조건에 맞게 사고. 최솟값을 33이라고 생각하여 4번을 골랐을 수도 있었을 문제
12번: 둘러싸인 모든 영역의 넓이는 차의함수를 통해 구해줄 수 있음. -1,0,2중 어느 것이 중근인지 결정해야 하는데,
(가),(나) 조건을 취합하여 가능한 경우를 머릿속으로 쉽게 그려볼 수 있음. 가능한 경우는 x=0
이후 적분 계산 (2024학년도 6월 10번, 14번에서 이와 비슷한 계산을 시켰으므로 과한 계산은 아닌듯함)
13번: 2024학년도 9월 평가원 12번 변형문제. 당연히 시작점을 a5로 잡고 정방향 추론.
케이스 분류 후, 조건에 맞게 역방향 추론. 무난한 수열 문제
14번: (나)조건 보고 벙찜. 고1때 배운 것 같은데 까먹어서 벤다이어그램 그려서 무슨 의미인지 파악.
케이스 분류 시, 특수한 경우부터 기준잡아 분류해야 하므로, 중근을 가지는 삼차함수 먼저 그려봤더니 바로 조건에 맞
아 떨어짐. 비율관계로 계산까지 마무리하고, 최종계산까지 방정식 풀어주면 끝.
고1 수학을 계속 상기하게금 하는 현우진T의 의지가 느껴짐
15번: 핵심아이디어는 닮음, 원에 내접하는 사각형.
이 조건들을 이용해서 ㄱㄴ판단, ㄷ계산. 이러한 세팅으로 주어진 도형문제를 꽤 만나보아서 원에 내접함이 보임.
1트때 ㄱㄴ판단하고 2트때 돌아와서 ㄷ계산 마무리
20번: 2019학년도 나형 21번보다 살짝 난이도가 낮은? 잘 만들어진 문제.
항상 이런 문제는 (모르는 함수)=(아는 함수)로 정리하여 세팅
이후 당연히 특이점에 집중하여 삼차함수 식 파악
굉장히 특이하다고 느꼈던 포인트는, 한 개의 발문으로 2개의 조건이 도출된다는 점.
21번: 겉보기에 사설틱하게 생겨서 쫄고 들어갔는데 막상 풀고 나니 상당히 깔끔했음. 많은 교훈을 주는 좋은 문제라고 생각.
항상 너무 복잡한 계산을 시킬 때는, 잠시 보류했다가 보다 더 나은 방향을 모색해야함.
설마 거리공식? 이건 아니겠지. 라고 생각. 어차피 식과 그래프는 상호보완적인관계이므로 그래프관점으로 전환.
두 길이가 같이 위해선 X변화량과 Y변화량이 동일하면 되겠구나라고 파악 후, 좌표 작성. (단 조건 놓쳐서 절음)
이후 부등식은 깔끔한 로그 부등식.
22번: 풀면서 계속 2023학년도 6월 평가원 14번이 생각났음.
미가+?=미불이면, ?=미불이므로 절댓값 g(x)는 x=0에서 미분 불가함을 파악.
하지만 g(x)는 미분 가능한 함수이므로, x=0에서 첨점임을 파악. 기울기 부호가 반대이므로 f'(0)값을 얻음.
이차함수식을 세팅하고 절댓값 g(x)식을 써준 후 x=0기준 어떻게 삼차함수를 설정해야 원함수가 최댓값을 가질 수 있
을지 고안. 당연히 중근을 갖는 삼차함수여야 미분가능하게 선택이 가능함.
어떻게 갈아타는 함수인지 파악했으므로 비율관계를 통해 계산.
문제들이 굉장히 아름다움
26번: 28번보다 훨씬 오래풀음. 3점을 계속 꼬아서 푸는 것 같은 느낌
28번: 언급할 필요도 없는 국밥 유형. 난이도는 2024학년도 수능 27번보다 쉬운듯.
29번: 약간 변수분리하듯이 일반항을 작성해주어야함. 이것도 예전에 비슷하게 풀어본적이 있어서 이 아이디어까지는
금방 도출했는데, 절댓값 an을 구하라는 것에서 당황함.
특이한 점은 일반항을 구하는 것에서 다소 복잡하고, 일반항을 구해서 다시 한 번 일반항을 구해야한다는 것.
29번치고는 상당히 어려웠다고 생각.
30번: 읽지도 못하고 끝남
역시나 준킬러 폭탄으로 잔잔히 때리는 시험지인데 2회보다는 무난한 느낌.
그럼에도 불구하고 어려운 난이도의 시험지라고 생각. 6평보다 어려운듯.
하지만 사설틱하게 과하게 어려운 느낌이 아니라 기출 복습 포인트도 많고 깔끔하게 어려운 느낌이 들었음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다소 의역) 그럼 앞으로 사탐러 성적표 백분위를 20씩 내려서 평가해주면 되겠네!
-
인적사항은 기입하구여 제가 그러려는 건 아니에요 ···
-
수능 끝나고 겨울 방학 때 쓸 수 있는 돈 300만원이 생김 (겨울 방학 중에...
-
맞89 10
-
시그모 난이도 1
지금 파트 12 풀었는데 뒤쪽들이더 어렵나요? 35분안엔 다풀리던데…
-
공차가 0이 아니라는 조건이 있어야하는게 아닐지. 물론 씹곳 옯붕이들은 무시하고 다푸셨겠지만
-
인증 12
어제 못보셨단 분들이 있다고하셔서 할것도 없고 심심해서 올려요 아니 님들 그래서...
-
게다가 꿈돌이 첫째 자녀 꿈빛이는 무려 대덕연구단지 연구원임. 역시 과학의 도시...
-
도형을 잘한다고 생각해서 도형 무조건 풀어서 넘기는데 그러면 가끔가다가 한번씩 말림...
-
오늘의 노래 추천 12
고3때 진짜 많이 들었었는데
-
사유: 시험 전날이지만 공부하기 싫음
-
누군가의 차단 목록에 벌써 들어간 것 같다...
-
생1 잘하는데 수학 못하는 사람은 저라서 안 신기함
-
fHEKid
-
D-10 ㄱㅂ 1
총정리 7-4 불찍파 10-1,2,3 아이디어 회독 영어 작수 풀어보기 신선모 9회...
-
36점맞고 멘탈나갔는데 ㅋㅋㅋ 저만어려웠나요 ㅠ
-
한시부터공부함ㄹㅇ 18
ㅇㄱㄹㅇ
-
내일 올려야겠네요 댓글단 분들 다들 내일 쪽지 확인해주세요 ^^유튜브도 올려보겠습니다
-
내일은 1
진짜열심히해야지
-
기하 84면 안정 2 ㄱㄴ? 21 22 28 30 틀
-
근데 슬픈게 난 전생 알아보는사람이 아무도 없어.. 12
물론 절대 못맞출거같긴 했는데 은테달고 글도 많이썼었는데 댓글도 평균 6~7개씩은 달렸고 ㅋㅋ..
-
고득점자들은 다 의대 가던데 이게 우리나라 이공계 발전에 유의미한 악영향을 줌?
-
6자리 아이민은 외우고 다녔는데.. 내 뇌 최대 용량이 6자리까지만 들어오나 봄
-
질문받아요 19
22, 23 미적 100이고 서울대학교에서 공학(전기정보 or 컴퓨터)과...
-
아무것도 할수가 업쒀
-
ㅈㄱㄴ
-
자러감 0
다들 내일봐요
-
?
-
만들려면 인강으로만 해도 가눙한가요? 확통임
-
아니었으려나
-
나의 화살은 네 심장을 가리키고~
-
고려대보내주세요 0
보내줘
-
오르비가 혼란스럽다
-
아이민 7자리 특 21
아직도 적응 안됨... 어떻게 100만으로 시작함?
-
ㅇ ㅑ 4
솔직하게 말해 솔 직 ㅎ ㅣ 자 고 싶 은 ㄷ ㅔ 실 ㅍ ㅐ 해 ㅅ ㅓ 오 ㄹ ㅡ...
-
풍악!!! 풍악을 울려라~~~~~
-
위치가 뭔가 의도성이 있는 듯 없는 듯(전 없다고 생각합니다 젖지님) 실제로 댓글...
-
맞팔구 2
일단 걸어주시면 씻고나서 맞팔해드림 은테 ㄱㄱ헛
-
신성규쌤 실물 2
ㄹㅇ 개잘생기심
-
진짜임
-
한지 씨볼롬아언제오를껀데 아 ㅋㅋㅋㅋㅋㅋㅋ 놀랍게도 오늘 실모와 백분위가 유사하다.
-
계신가요?
-
탐구를 한줄로 잘 밀면 10점 중반까지도 나오고 잘못 밀면 6점도 나온다.
-
…
-
낼 아침에 학교 가기 전에 들렀다가 가는게 낫겠죠? 계획 세워놓고푸는 중인데
-
93 85 나옴 수능 1 나올려면 그냥 기도밖에 답이 없는 건가
-
이감 파이널 패키지 풀어 보신 분 좋은 회차 알려주세요!!!
-
정신차리기 1
맛있는 점심 차리기
첫번째 댓글의 주인공이 되어보세요.