-기하, [Z자 꼴을 논함] *221128
*좋아요와 팔로우는 필자에게 큰 동기부여가 됩니다 :D
바로 문제부터 보시겠습니다, 다음 문항을 보고 떠오르는 풀이의 방향성을 정해봅시다!
*다 해결하셔도 좋고, 풀이 방향성만 마음속으로 정하셔도 충분합니다!
(*기하 미선택자 분들을 위해 정의 요소 보조선을 그었습니다)
28번. a^2+p^2의 값은? [4점]
다 정하셨나요?
위 문항은 22.11.28로 당시 기하러들에게 충격을 준 문항입니다.
가장 큰 이유론 "정의요소는 사용했는데, 다음으로 앞발을 내딛을 곳을 모르겠다"는 점에서 시간을 소요시켰던 것이죠.
저도 현역때 위 문항에서 막혀 당황스러웠어요. 현장에서 한 바퀴 돌아와서 문제를 다시 읽으며 든 생각을 표현해보겠습니다.
"저기 Z자 꼴만 어떻게 길이를 알면 해결할 수 있을것같아요.. 근데 P, Q 좌표도 모르고... "
아래 그림과 같이 길이가 30인 밧줄이 있다고 합시다.
밧줄을 Z자로 접고, 접힌 부분의 길이가 10이면, 남은 부분의 길이는 20입니다.
Z자꼴의 x성분 길이가 15일때, 겹친부분의 길이 Δ는 모양에 관계없이 5가 됩니다.
이 생각을 문제에 적용하면
아래와 같이 겹친 부분의 길이를 Δ로 두고 쉽게 미지수를 구할 수 있습니다.
Solution)
당연하고 단순한 내용이지만, 수험장에서 새로운 미지수의 도입과 전체 길이에서 겹친 부분을 제외하는 부분적 길이를 묻는 문항이기에,
수I 도형활용, 기하 모두 배워갈 점이 많은 문제라고 생각힙니다!
위 방법과 다른 대표적인 풀이로는 좌표로 해결하는 방법이 있는데, 결국 겹친 부분의 길이를 표현하는데 쓰일 뿐 결론부로 향하는 길은 동일합니다, 다만, 위 과정을 수식으로 표현하느냐, 직관적인 기하로 해석하느냐의 차이라고 생각합니다.
긴 글 읽어주셔서 정말 감사합니다 :D
혹시 더 궁금하신 점 있으시다면 댓글로 남겨주세요!
0 XDK (+12,000)
-
10,000
-
1,000
-
1,000
-
https://orbi.kr/00029229459#c_29230307 저는 여혐이...
-
헌법에 적힌 국방의 의무는 왜 남자만 혼자 독박으로 지나요?!
선개추 후감상이다옹
저장해놨다가 논술준비할때 봐봐야지
![](https://s3.orbi.kr/data/emoticons/oribi_animated/006.gif)
고능아과목 ㄷㄷ![](https://s3.orbi.kr/data/emoticons/dangi/036.png)
이 게임 할만 해요베트남어 칼럼은 처음보네용 ㅎㅎㅎ
ㅋㅋㅋ
ㅋㅋㅋㅋㄱㅋㅋㅋㅋ
![](https://s3.orbi.kr/data/emoticons/dangi_animated/020.gif)
볼 사람이 많을진 모르겠지만 좋은 칼럼이네요![](https://s3.orbi.kr/data/emoticons/orcon/018.png)
저야말로 감사드려요지금봐도 저때 저건 ㄹㅇ충격이지
저도 예전 가형 타원과 직사각형이 접하는 문제와 함께 손꼽는 이차곡선 문제라고 생각해요..
아 그 문제 답 더러웠던거 같은데ㅋㅋ
![](https://s3.orbi.kr/data/emoticons/orcon/010.png)
2백몇/19였죠 답이ㅋㅋㅋㅋㅋ
![](https://s3.orbi.kr/data/emoticons/oribi_animated/015.gif)
대충 땀 흐르기 시작할때근데 왠지 특수각 60도처럼 생겼는데 하고
찍으면 생존하는 문제
PF1과 QF2를 각각 구하려 들면 망한다고 보고 풀이를 시작해야 유리한 듯 싶네요...
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
정확하십니다 선생님! 각각 구하려고 시도하면 실전에서 심연으로 가버리는 문제죠..한명의 노인으로서 《기벡》이 새록새록 기억납니다
![](https://s3.orbi.kr/data/emoticons/oribi_animated/014.gif)
역시 기하 초고수![](https://s3.orbi.kr/data/emoticons/oribi_animated/009.gif)
아직 배울 점 많은 반실수입니다약연님 저 오늘 공간벡터 평면의 방정식 공부했어용 책에 외적 쓰는 법 보고 191113 한 직선과 점 있을때 점을 시점으로 하고 직선위의 두점에 대한 위치벡터 잡아서 외적했더니 ㄹㅇ 법선벡터 나와서 고거 간단한 정수비로 고치고 평방 계수비로 쓰고 세 개 점 중 하나 대입해서 평방구하고 x절편 구하는 문제라 상수 우항에 몰아두고 상수로 나눠서 x절편 구했어요
수능은 아니고 대학 수학 예습차원에서 공부해봤습니당
![](https://s3.orbi.kr/data/emoticons/oribi_animated/005.gif)
작성해주신 풀이과정이 명쾌해서 (전 공벡 좋아해요) 보는 저도 기분이 좋아지네요 :D선생님께 조금이나마 도움이 되었다면 저야말로 기쁘네요
예전에 아무것도 몰랐을땐 칼럼보고 개쩐다라고만 생각했는데 이제는 한번 그 내용을 배워볼려구요..답글 달아주셔서 너무 기쁘네요