미적 30번 푼 사람들 와바
끝나고 푼거임
맞음?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜냐하면 정시로도 가기 때문
-
낙사? 낙지? 1
이게 먼가요
-
안전빵 성적 받아서 ㅆ안정 한개깔고 두개 지르고 싶엇는데ㅡㅡ실채 나오고 낙지...
-
어제까지 60%였는데 오늘 20%됨 걍 거르는 게 맞나 싶음
끝나고 푼거임
맞음?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
왜냐하면 정시로도 가기 때문
낙사? 낙지? 1
이게 먼가요
안전빵 성적 받아서 ㅆ안정 한개깔고 두개 지르고 싶엇는데ㅡㅡ실채 나오고 낙지...
어제까지 60%였는데 오늘 20%됨 걍 거르는 게 맞나 싶음
대충 ln갖고 치환 존나 때릴거 같은 문제,,,,
30번 끝나고 보니까 할만하네 다른거 버리고 이거풀걸
이제 지금까지의 두배 연산하시면댐...
연산은 계산기한테 시키고 싶다...
풀이 자체는 맞는거죠?
마자여
16이 답아님?
맞는데 전 시험시간땨 못풀어서 한번 풀이만 해본거에요
항 4개의 계수를 식 4개 이용해서 다 구해내면 되는 거 맞음??
간단하긴 한데 계산을 많이 해야하네;
사실 f의 세 정점이 y=x^2위에 있다는걸 활용해 인수 3개 정하고 시작하면... 여전히 계산 많음
1. (가) 조건이 험악하게 생겼지만 f'(x)/f(x)-1/x 이므로 적분식은 lnㅣf(x)ㅣ-lnㅣxㅣ=lnㅣf(x)/xㅣ로 식을 정리할 수 있고 f(3)=9f(1)임을 얻을 수 있다
2. (나) 조건에서 함수 g(x)는 미분가능하므로 극값을 가지면 g'(x)=0이다. 따라서 g'(1)=g'(3)=0에서 f(1)=f'(1)이고 f(3)=f'(3)
3. g(1)=0이므로 f(1)=1이고 따라서 f'(1)=1, f(3)=9=f'(3) 임을 알 수 있다
4. 사차함수에 대해 5가지 정보를 알기에 모든 계수를 결정할 수 있다. f(1)=f'(1)=1에서 f(x)=(x-1)^2*(ax^2+bx+c)+1로 식을 잡을 수 있고 f(0)=0, f(3)=9=f'(3)을 활용해 a=-1/4, b=7/4, c=-1임을 확인할 수 있다.
5. f'(2)=15/4이고 적분식을 [xf'(x)-f(x)]/x^2*g(x)로 바라보면 전자를 적분해 f(x)/x 후자를 미분해 g'(x)=f'(x)/f(x)로 바라볼 수 있고 식을 정리하면 f(3)g(3)/3-integrate f'(x)/x from 1 to 3을 얻을 수 있음. 계산하면 ...