칼럼) 수학_개념을 의식화하고 이를 반복하여 체화하기
안녕하세요!
지난번에 제가 "수능 수학을 공부하며" 라는 칼럼을 작성하였는데,
거기서는 어려운 문제를 만났을 때 어떤 행동양식을 취해야하는지에 대한
얘기를 다루었습니다.
오늘은 그때의 내용을 톺아보면서 어려운 문제를 만났을 때 어떻게 해야할지에 대해
다시 한번 생각해보고 ( 미적분이 아닌 공통 문항을 가져왔습니다.)
그러면 '나는 이 문제에서 뭘 어떻게 배워야 수학을 더 잘할 수 있을지'에 대해
제가 예전부터 고민했던 것들에 대해 말씀드리겠습니다.
시작하기 전에 https://orbi.kr/00054493225 요 글을 보시고 오는게 좋을 것 같습니다!
우선 제 아래는 제 프로필입니다..
영재학교 차석 졸업
강남대성 본관 재수
2021 6.9.수능 국어,수학 1등급
2021 수능 생명과학 만점
울산대학교 의예과 합격
유현주 선생님 조교
+) 저는 공부는 학생이 하는 것 이라고 생각합니다. 물론 저도 다양한 수업들을 들었고
그걸 참고해서 공부하며 실력이 늘기도 했습니다.
제가 얘기하고 싶은 건 강의가 100%를 책임져주지 않는다는 것 입니다.
강의를 통해서 혹은 이런 칼럼들을 통해서 공부의 방향을 잡고, 그 이후부터는
실천, 반복, 체화를 통해 실력을 늘려나가야 합니다. 그러니
나에게 맞는 방법을 찾아보고, 혹은 선생님의 방법을 나한테 최적화 시키는 과정을
꼭 거치시고, 좋은 방향을 잡아나가시길 바랍니다!
1. 의식과 무의식
제가 수학 공부하면서 했던 하나의 생각입니다. 학습의 과정을 도식화 한 건데요.
무의식 1은 약간 뭘 어떻게 해야하는지 잘 모르겠고,
이것 저것 만져보다가 풀리면 풀린 것이고, 아니면 아닌 그런 단계입니다.
어려운 문제를 만났을 때 저는 대부분 무의식 1처럼 문제를 풀었던 것 같습니다.
의식 단계는 이제, 그 무의식 1처럼 풀었던 문제들을 의식화 하는 과정입니다. 즉
내가 어찌어찌 해서 풀었던 문제에서, 이건 어떤 개념이고 이건 저런 개념이다.
라고 , 그저 생각해왔던 것들을 키워드를 통해 의식화하는 과정입니다.
제가 이전 칼럼에서 풀었던 문제에서 키워드를 변수가 두 개인 최대소 구하기로 뽑아냈던 것 처럼요.
무의식 2는 그럼 의식화 되었던 개념들이 이제는 체화되어서 더 이상 개념화를 하지 않아도 자연스럽게
문제가 풀리는 그런 단계입니다.
그래서 간단하게 이 세 단계를 설명했는데, 여기서 중요한 것은
무의식 1에서 의식 단계로 가는 의식화 입니다.
내가 키워드를 잡은 이상 그 개념을 반복하기만 하면 무의식 2로 가는 것은 간단합니다.
그저 반복, 학습, 체화의 과정을 거치면 되니까요.
덧셈이라는 예시를 들어보겠습니다.
지금 우리는 51 + 17 이라는 걸 들었을 때 68이라는 결과를 자연스럽게 도출할 수 있습니다.
딱히 어떤 생각을 하지 않아도요.
하지만 의식화를 하는 과정은 꽤 까다로운 것 같습니다. 내가 잘 모르는 것을
개념으로 끌어내야하니까요. 그래서 오늘은 이것은 연습하는 방법에 대해 많이 생각해보려고 합니다.
2. 까다로운 문제를 만났을 때의 행동 양식
이전 칼럼에서 다루었던 3단계에 따라서 이 문제를 진행해보겠습니다.
1단계 문제에 나와 있는 조건 파악 그리고 정리하기
우선 구하는 것은 n의 조건 입니다.
그 후에 문제에 나온 조건들을 순서대로 정리했고 중근을 두 개 가진다는 것이
문제의 핵심이겠구나라고 생각하고 넘어갔습니다.
이차 함수는 최솟값이 존재한다는 것을 통해 꼴을 유추했습니다.
2단계 내가 할 수 있는 한 조건을 이용하고 정보를 추출하기
자 이후에는 1,3조건을 통해서 진행시킬 수 있는 내용입니다. 계수가 0보다 크고
최솟값이 음의 정수임을 나타냈습니다.
이후에는 중근이 2개라는 의미를 파악하려고 노력했습니다.
중근을 생각해보면 f(x)라는 이차함수가 최솟값에서 y=0에 접하나?
라고 생각할 수 있지만 최솟값이 음의 정수이므로 이는 불가능 함을 파악했습니다.
그 후, 아 x^n-64에서 중근 1개 f(x)에서 중근 1개 이런 꼴이 아니구나
각각에서 근이 2개씩 나오고 그 근이 서로 같은거구나 라는 것을 파악했습니다. ( 이 부분에서 시간이
조금 걸릴 수 있습니다. )
3단계 아이디어를 생각하기
2단계에서 생각했던 아이디어를 구체화 시켜 문제를 풀어주면 됩니다.
만약 여기서 생각했던 아이디어대로 풀리지 않으면 다시 2단계로 돌아가
아이디어를 생각해보면 됩니다.
두 실근이 같다는 것을 이용해 답을 구해주면 됩니다.
3. 문제를 통해 얻어가기 - 의식화하여 개념을 저장하기
n제나 기출을 풀면서 까다로운 문제를 만났을 때의 공부법에 대해 말해보려고 합니다.
앞선 내용들의 연장선 입니다.
제가 1번에서 의식화라는 것이 중요하다고 말씀드렸습니다.
뭔가를 의식화 한 후에 이를 반복하여 무의식적으로 문제를 풀 수 있도록
하기 위함입니다.
이 문단은 그래서 의식화는 어떻게 하냐에 대한 이야기 입니다.
사실 여기서는 사람마다 너무나 다른 방법을 가질 수 있고, 제 방법 또한 아직 완성됐다고 생각
하지 않기 때문에 아 저렇게 할 수도 있겠구나라고 생각하면서 봐주시면 되고,
본인에 맞는 방법을 더 생각해보시길 바랍니다!
우선 저는 키워드화를 주로 이용했습니다.
어려운 문제를 풀거나 혹은 틀렸을 때, 그 문제를 풀기 위한 아이디어를 내가 사용하는
용어를 통해 키워드화 시키는 것 입니다.
방금 문제와 같은 경우는 "중근의 의미와, 중근이 2개일 때의 가능성" 으로 키워드화 했습니다.
이것을 오답노트나 수학 개념 노트에 적어놓고 문제의 상황을 같이 적어 복습하고 학습하는 것입니다.
이후에 또, 비슷한 문제가 나온다면 그 문제를 풀고 세워놓았던 키워드에 이를 추가시키면서
반복하면 됩니다.
만약 나오지 않는다면, 까먹고 있다가 주기적으로 한번씩 복습 + 문제에 나오면 다시 복습
정도로 진행하였습니다.
이렇게 쭉 진행하다보면 개념 노트엔 교과서에는 나와있지 않는
피부로만 느낄 수 있는 다양한 개념들이 내 용어로 키워드화 된 채로 저장되어 있을 것이고,
이중 몇 개는 반복되고 체화되어 완전히 내 머리속에 들어가 있을 것 입니다.
또 그렇지 못한 것들은 적혀있는 문제 번호나, 앞으로 만나는 문제들을 통해 정리해나가면 된다고 생각합니다.
수학 공부도 이처럼 다양한 개념들을 반복해 학습하며 체화시켜가야 합니다.
(사실 반복과 체화는 제가 수험생활을 하며 가장 핵심적으로 세웠던 것이기 때문에 많이 반복됩니다..)
어려운 문제를 통해 느끼는 막막함은 분명 수험생에게 스트레스를 줄 수도 있지만
그 문제에 나온 개념 하나하나를 내가 흡수해간다고 생각해주세요.
무언가에 부딪혀보는 것이 수학에서는 실력 상승이 된다고 생각합니다.
그 과정에서 우리는 학생인 우리가 할 수 있는 일을 묵묵히 해나가면 될 것 같습니다 :)
오늘도 부족한 칼럼 읽어주셔서 감사합니다!
어떻게 쎃으면 좋겠다. 혹은 어떤 주제를 다루어 줬으면 좋겠다와 같은 것들도 댓글로
알려주시면 정말 감사하겠습니다.
0 XDK (+11,000)
-
10,000
-
1,000
-
안녕하세요! 현재 서울 내 메디컬 재학중인 예비 4학년 학생입니다. 휴학재수를...
-
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는 예비 한국외대학생,...
-
환각 니지카가 되부렸어..
-
가능성 있다고 보시나요? 홍대 자전 써 보신 분..ㅇㅅㅇ
-
하 상처만 남았네
-
휴~
-
친목질이나 해야겟슴
-
4수했던 화작 기하 설댜목표하시는 분이었는데 어케되셧는지 궁금하네요
-
옯창빙고… 5
하긴 4년차인데 이정도는 되는 게 맞는 거 같다
-
연대입학처 0
하ㅠㅠ
-
강기분 인쇄 뭐여 11
언매 105페이지인데 이거 나만 이러냐 이거 때문에 교환하기도 뭐하지만 이게 뭐냐 대체
-
엄마 장남은 초 5 때부터 수상하 들어가고 중 3 때 수능 1등급 컷에 살짝 안되게...
-
옯창빙고 3
전 순수하네요
-
뭐져 ㅂ
-
아이고 형님아 4
-
쉬운건 금방 풀고 어려운건 10분대 초중반부터 길게는 20분까지 쓰는데 이거 시간...
-
하 시발 수학만 했노;;
-
내 이상형이 여장이 어느정도 잘받는 남자이긴 한데.
-
수학2 221108 이문제 자세히 어떻게 푸는건가요? 3
이문제에서 이차함수랑 직선이 저렇게 그려질때 둘러쌓인 부분의 넓이도 이차함수의 축을...
-
열심히 해야지...
-
자기가 ab인지 알 수가 없으니까 애초에 ab가 몇 명인지도 모르는거 아닌가요?...
-
닉변선언문 10
1월 27일 0시 0분까지 연세대 합격자 조기발표가 나오지 않을 시 닉네임을...
-
기하 강의 질문입니다. 14
올해 수능 수학에서 기하를 선택하려는데, 추천해 주실 만한 실전 개념 강좌...
-
몇달전에도 갖고싶었는데 여전함 갖고싶은이유 1.빨래건조대 펼치면 ㄹㅇ발딛을 틈이...
-
추합 보통 어느정도 도나요? 국숭세단 라인이에요
-
피방 안 간지 3
오조오억년
-
24일인데 22일 23일에 하는 그런그림 연대는... 에휴 뭘 바라니
-
흐어
-
ㄹㅇㅋㅋ
-
고딩 특 6
모든 것이 재미요소임
-
오늘 밖ㅇ에 나가서 숨을 쉬면 안 됐던 거 같ㅇ어..
-
생윤 사문 인듯 생윤이 이슈가 좀 있긴한데 응시자수가 워낙많아서 인구수로 조지는 느낌
-
옯뉴비네 0
-
가즈아
-
[속보]국회 측, 헌재에 '부정선거'론 주장 제한 요청 3
윤석열 대통령 탄핵심판에서 이른바 '부정선거론'을 재차 제기하자 국회 쪽은 이번...
-
재밋는 논쟁이 잇을거 같은 글 보이면 알람 ㅋ7놓음
-
왕사슴 5
-
디씨에 누가 내 점수로 이거 안되냐고 계속 물어보네 7
나군때매 그른가 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅈㄴ웃기네 나도 됐으면 좋겠다
-
머 좀 하다오면 500개
-
물 제외 아무것도 안먹겠습니다 물도 안마셨을때 살 수 있는 기간은 한달도 안되지만...
-
지1 독학서인데 무려 250917, 251117 내용이 들어있던 책이에요(아래사진)...
-
스윗중남 등장 3
안녕하세요 흐흐
-
가천대가고싶다 1
가천대 보내줘 가천대 보내줘 가천대 보내줘 가천대 보내줘
-
시대인재 재종 다니면서 단과 2~3개 병행하기에는 시간이 부족할까요? 목동 갈...
-
제발 조발좀 해라… 진짜 내일도 안하면 진짜 하 시간표도 공개 다해놨던데 정시차별 그만해라 좀ㅠㅠㅠ
-
안녕하세요, 경북대학교 25학번 신입생 여러분! 저는 경북대학교 컴퓨터학부...
-
꾸중글 6
꾸중듣고싶다
-
에 하면 좋겠다
-
제육에 유부초밥을 씹으며 연대 입학처를 향한 복수심을 불태웠습니다..
감사합니다 ㅎㅎ
잘 읽었습니다. 감사합니다. 꾸벅
저도 강남대성 다니는데 오늘 개강이네요!!선배님 좋은말씀 감사합니다.
이런 게 진짜 칼럼인 듯. 그저 그럴 듯한 말재주로 풀이만 서술하는 게 아니라 수학을 잘 하는 사람이 어떻게 생각하여 어떤 의식의 흐름대로 푸는지 명확히 보여주는 글인 것 같아서 정말 유익하게 읽었네요.
인쇄하고 싶은데 어떻게 하는거예요? 폰이라 안되는 걸까요?