수능 수학 - 기출문제를 대하는 자세
게시글 주소: https://games.orbi.kr/0004546443
1. 안녕하세요~
안녕하세요. 저는 이번에 2014수능을 본 수험생입니다.
2013 수능 수학 가형 1등급 턱걸이의 아쉬움으로 인해 2014 수능을 다시 치르게 되었습니다.
1년 전, 자신 있던 과목에 너무 충격을 먹어서인지 2014학년도에는 만반의 준비를 갖추었고, 다소 과한 나머지(?) 수학만 시간이 45분 정도가 남고...(다른 과목은 망해버렸네요///)
그래도 누군가에게는 1등급 -> 100점 의 과정이 필요할 것 같아서 제 경험을 토대로 글을 써보려 합니다.
(2013학년도 수리 6평/9평/수능 100/88/93 -> 그저 그런 1등급...심지어 10월은 2등급;;
2014학년도 수학 강대 모의고사 포함 모든 모의고사 100점!!)
2. 수학 기출 문제를 공부해야 한다?
여러분은 수학 기출을 왜 풀어야 한다고 생각하나요? 어차피 이 세상에 존재하지 않는 새로운 30문제가 등장할 것이고 또 이상하게 수학은 기출문제를 풀어도 수학 실력이 느는 거 같지가 않은데 말이죠.
그럼 우선, 수학 기출문제를 왜 풀어야 하는지 예시 문항부터 보겠습니다.
다들 아시다 시피 아래문제는 올해 대수능 수학B형 29번 문항입니다.
이 문제를 보고 무슨 생각이 드셨나요?
어렵다. 난해하다. 역시 평가원 짱!!!
이런 생각이 들면 이미 기싸움에서 밀린 겁니다.
이 순간, 문제에 써진 표현을 식으로 옮겨보자는 생각을 한 순간, 문제는 쉬운 방향으로 흘러갑니다. -> 이 이야기는 나중에 다루도록 할게요. : 여러분의 관심이 필요합니다!
다음으로 살펴볼 문제는 2012학년도 대수능 수리 가형 21번 문제입니다.
물론, 이 문제를 시험장에서 직접 겪지는 않아서 처음 봤을 때의 느낌은 잘 기억이 남지 않지만, 꾸준히 수학 공부를 하신 상태에서 고3 후반부가 되면 이 문제의 풀이 방법에는 크게 두 가지라고 거의 외울 정도가 됩니다, (되시는 분이 많습니다, 그렇게 되게 되어있습니다, 그래야 합니다.)
첫째 방법은 평면의 법선 벡터를 직접 설정해서 풀이하는 방법입니다.
두 번째 방법은 법선 벡터 없이 세 평면이 하나의 교선을 가질 때를 생각하고 평면화하여 삼각함수를 이용하여 문제를 푸는 방법입니다.
저는 2014수능 수학B형 29번을 풀면서 21번이 자연스럽게 떠올랐고, 덕분에 평가원을 믿고 다음 단계로 진행할 수 있었습니다. (어떤 과정이었을지 스스로 풀어보시면 좋겠습니다.)
3. 기출문제를 언제, 몇 번씩, 어떻게 풀어야 할까?
위에서 구구절절 예시까지 들며 이야기를 했지만, 사실 기출문제를 푸는 데에 정도는 없습니다. 많이 푸는 놈이 이기고, 평가원의 생각을 쉽게 습득하는 녀석이 이기는 거겠죠.
수험생 게시판에 가끔 “수학은 무조건 기출문제죠?”, “수학, 처음부터 기출문제를 계속 돌리면 점수 오르나요?” 라는 질문이 올라옵니다.
저는 이러한 식의 질문에 단호하게 “아니!” 라고 말하고 싶습니다.
이유는 단 하나입니다.
너무 일찍 풀면 기출문제의 맛을 음미할 수가 없습니다. 고기도 먹어본 놈이 잘 먹는다고 수학문제도 잘 푸는 학생이 잘 풉니다. 수험생 초기에는 기출문제가 눈에는 그냥 복잡한 문제로 밖에 안보입니다. 제 주변에 어떤 학생이 했던 짓을 예시로 들어볼게요.
2012학년도 9월 수리 가형 16번 문항입니다.
다들 아실 겁니다. 저 화살표 부분을 적당히 치환하고 계산을 하면 쉽죠.
그런데 그 학생은 대놓고 A 와 B 를 구하고 있었습니다.
민주주의 나라에서 뭘 하든 자기 마음이겠지만 보는 친구들은 안타까워하며 말렸지만 꿋꿋이 계산해 나가는 모습이 참 보기 좋았습니다.
만일 위와 같은 방식으로 똑같이 3번 풀어놓고 ‘난 기출 세 번 돌림~^^’ 이러고 다닌다면 차라리 안 푸느니만 못한 상황이 되고, 기출문제는 정말 쓰레기 of 쓰레기가 되어버립니다.
저도 1년 전에는 무조건 기출! 기출! 하며 수학 공부를 했었습니다.
하지만, 기출이 능사가 아니더군요.
이 세상에 존재하는 많은 양의 문제를 풀어 수학 전반적인 실력을 쌓은 뒤에 기출을 제대로
보는 것이 초기부터 국어처럼 기출 문제집만 잔뜩 쌓아놓고 이미 풀었던 문제들 또 푸는 것보다 훨씬 낫습니다.
그렇다고, 문제집에 있는 기출문제는 모두 풀지 말라는 뜻은 아닙니다!!! 수험생활 초기에도 수학선생님들은 당연히 기출문제를 들고 수업을 하십니다. 기출문제에서 배울 것은 배워야죠. 단, 닥치고 기출은 아니라는 점입니다. 초기에는 기출을 기출처럼 보지 않는 것도 현명한 방법입니다.
4. 마무리
인생에서 첫 수능을 준비하시는 예비 고3, 혹시 기출에만 목멜 준비하시고 계신가요? 다시 도전하시는 졸업생 분들, 혹시 기출만 맹목적으로 바라보시지 않으셨나요?
기출, 분명히 풀고 시험장 들어가야 합니다. 맹목적으로 추구하는 건 무엇이든 위험합니다. 기출 문제와 타 시중 문제들을 골고루 균형 있게 섭취하며 건강하게 수학 공부하시길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
공부잘하고싶다 0
쩝...
-
삼수 돈 모으려 하는데ㅜ 알바 경험이 없어서 안구해지네요ㅜ
-
하..그냥 소장용으로 하나 사야겠다
-
중학교내신은 예체능기가정보등 버린과목이랑 수행 다 포함해서 146명중에 23등이고...
-
플스는 거지라 못사고 pc는 뭔 요구사양이 안드로메다로 가버려서 불가능...
-
생1 유전땸에 3떠서 사문으로 도망칠려는데요 1. 서성한 공대 노리는거면 사탐런...
-
으....흐 .. ..흐
-
SKYSSHCKHS - 3 +- 0.5 메디컬 3.5 +- 0.5 대치동 및 강남8학군 +0.5
-
공통만점이긴한데…
-
입이 근질근질한데 돈이 읎어서ㅋㅋ어우 대충 그렇습니다 사생활이긴한데 밤에 바쁘게...
-
수능 끝나고 완주한 게임이 파크라이5 하나밖에 음슴 3
하루종일 컴퓨터 앞에 앉아있진 않았어도 꽤 많이 했는데 거의 대부분 깔았다 지웠다...
-
지금 진학사 고대 어지간한 과 다뚫리는 점순데 라인 물어보니까 누가 복학하거나...
-
만질만질
-
마이 마이 마이맥 대성 마이맥 19패스 마이맥 대성 마이맥
-
대학교 공통수학 범위가 고등학교로 내려오면 수능이 이런 느낌이겠다 싶음 솔직히......
-
잡내는 나는데 누린내는 나면 안됨 정구지는 양념 되어있어야하고 소면도 줘야함 김치랑...
-
후후 히히
-
문과미적이임 공통 12월까지 시발점+쎈 삼회독 (+노제도형노베공수간단히) 끝나면...
-
나빼고 다들 먼가 뒤에서 친한 것 같음
-
외로워뇨 7
진짜 진심임뇨
-
물2로 바꿔서 한번 더 보는거 어케생각하심? 서울대 눈앞에서 간당간당하니까 욕심나는데 ㅅㅂ
-
개빡치네 2
뻥임뇨
-
대학 가본적이 한번도 없음
-
츄베릅
-
그냥 수능 시간 내내 잠자면 됨?
-
하 개떨리네
-
국어 백분위 96 고정 vs 수학 백분위 98 고정 22
이럼 어떰
-
고딩 때는 많았는데 슬퍼
-
다들 잘자시게 6
-
25수능 독서 지문 및 문항 해설+엮어읽기, 앞으로의 학습 방향 2025 국수영탐...
-
님드라 이거 보고가 14
당신은 따봉 전기쥐의 가호를 받았습니다 그로인해 원서영역이 대박날 것입니다
-
406.3인데 cc임..
-
현역 물리 밀려쓰고 지거국가서 학고반수함 국어는 2등급에서 3등급 왔다갔다하는성적...
-
주무십쇼 2
오늘 할 거 다 함
-
풍산자 괜찮나요? 서술이 가장 자세해 보이던데
-
미야오 안나 6
-
벌써 16레벨을 앞두고 있구나....
-
강사중에서 교육부가 킬러 배제를 했으니 킬러는 안내요 이러던 강사 있었는데 왜...
-
혀누진..? 3
이건 그냥 영상만 활용한다는 걸까요?
-
내려가기도 했군여
-
[칼럼] 24학년도 수능 독서 분석(평가원화 ver.) 2
1년 전에 제가 작성했던 '2024학년도 수능 독서 주요문항...
-
1.25배속이었네
-
삼밤수 하고 싶은데. 서울대 가고 싶은데 제가 공통은 많이 맞추는데 확통을 못해서...
-
새벽이라 그런지 뒤지게 춥네
-
아이오 못토 조카이 나테 이타이타이노 돈케테 손자이칸지 보쿠보쿠 나가루루루 아이...
-
올해 국어 한거 정석민 문개정, 문상추, 문기정, 비독원, 비원실, 비실독 김승리...
-
잭팟 전형으로 서성한 ㅆ가능?
-
ㅇㅈㅎㅈㅅㅇ 5
음미.. 문제풀다보면 소름돋더라고요 전율이라해야할까
뒤늦게 질문합니다
2012 21번에서 두 번째 풀이인 세 평면이 하나의 교선을 가진다고 가정하는 것은 가지지 않을 수도 있다는 상황을 배제한 논리적 비약 아닌가요?
또한 2014 29번도 평면화해서, 이루는 각을 세타로 잡고 푸는 것도 논리적 비약 아닌가요?
2014수능을 보자마자 별생각없이 평면화해서 풀어서 맞았지만, 2015수능을 다시 준비하면서 29번에 대한 여러 풀이를 보니 제가 푼 풀이가 논리적 비약이 있다고 느꼈습니다 그래서 29번을 맞은건 운이 좋게 작용한거라고 생각하고있었는데 궁금해서 질문드립니다.
또 수학 1등급 턱걸이 수준에서 실력을 올리신 방법에 대해서 더 여쭤보고 싶습니다
일단 맨 아래 질문은 쪽지로 답변해드렸고...
그게 진정한 수학의 관점에서 보면 논리적 비약이 맞지만 수능 수학을 준비하는 수험생입장에서는 그게 오히려 정당하고 논리적인 길이라고 생각합니다.
그렇기에 기출문제를 꾸준히 공부하고 보는 것이구요.
논리적 비약... 충분히 맞는 말인데
지금 학생에게
'수학적 논리성'
vs
(2014학년도에서 29번을 맞은 것과 같은)
'절대로 운이 아닌 수능적 직감'
둘중에 무엇이 더 중요하신지 고려해보면 답이 나올 것 같습니다.
가지지 않을 경우 직접 해보실수 있어요
한 교선만 삐딱하게 해서 돌려보면