↘↘★★★수열에 관한문제.. 풀어주십쇼.!★★★
게시글 주소: https://games.orbi.kr/000855551
이 문제가 계산이 좀 난잡한 것 같기도 하구,
어쩔 수 없이 해설을 봤는데, 그닥 와닿지가않는군요. 뭔가 해설지답게 딱딱하다고 해야하나.;
쨋든
해설지대로의 설명말구
푸셨을 때의 그 풀이를 좀 적어주시면 정말 아주 감사드리겠습니다!
문제는요.
첫째 항이 16이고, 공비가 2^1/10 인 등비수열 {An}에대하여
log An 의 가수를 Bn이라 하자.
B1, B2, B3, B4, B5 ... Bk-1, Bk, Bk+1 +1
이 주어진 순서로 등차수열을 이룰 때
k의 값은? (단, log2=0.301으로 계산한다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
셋 다 나군이라서 고민되는데 이건 단국치가 맞음?
-
썸남/썸녀에게 "같이 별 보러 갈래?" 라고 말할 수 있고 낭만이 넘치는...
-
추합이라도 ㄱㄴ? 간절함
-
쪽팔려서 남들한테 성적 못 말하고 다닐듯
-
맞죠? 1컷 맞추기는 확통이 2배 이상 쉽다는데
-
배고파 2
-
이게 맞나 ㅋㅋㅋㅋㅋㅋ
-
체스 할사람 2
아직 안자는 옾붕이 있나요?
-
이 길의 끝이란 운명처럼 모두 네게 흐르고 있어
-
누구 자녀분이 들어가고싶다고 강력히 주장하기라도 하나?
-
언어 하나 배워두고 복수 전공으로 경영 같은거 같이하면 문과에선 경쟁력있고 ㄱㅊ않음?
-
난 1학년임 0학년이 될수도있다는게 개소름
-
기차지나간당 17
부지런행
-
늦은 나이에 대학을 다시 가야겠다고 결심하고, 컴컴한 밤까지 독서실에서 수능을...
-
경희대 자전 7칸은 말도안되는데 정상화빨리해줘
-
입시는 진짜 2
빨리 뜨는 사람이 승자
-
추천 좀…
-
디즈니랜드 가볼지말지
-
카의 인성면접 점수제 도입(수능 95%, 면접 5%) 성의 모집인원 50명으로 대폭 증가
-
대학교 들어가서 받는 교육이 훨씬 더 중요한거 같은데…
-
정시 64311 2
국어 백분위 33 수학 백분위 74 영어 3 한국지리 백분위 97 세계지리 백분위...
-
잠이 안온다 1
-
오늘 동기랑 7
카공하면서 재수 때 같이 다녔던 학원 이야기했는데 추억 돋고 재밌더라 금방 미화되는 듯
-
본인이 문자 그대로 똑같이 유지만 해도 수능 체제나 평가방식, 모집인원, 반영비 등...
-
사탐런 고민 8
이번에 생지 원점수 44,40인데 생명은 사실 여기서 더 잘볼 자신은 없고 지학은...
-
백분위 97~100 : 나 1등급인데.. ~~ 백분위 89~95 : 나...
-
원서영역 ㅁㅌㅊ 13
걍이대로ㄱ할까아님 걍 고대 질러버릴까 군수생임
-
증원이나 이런거까지 고려해봤을 때 어떤거같음? 나군에서 인설의 아닌 곳 쓸 곳이...
-
찾았다 0
한국사 -> 한검능 국어 -> LEET / PSAT / 7급 공무원 시험 국어 영역...
-
안된다고 해도 할거지만 정작 된다고 하면 의심함
-
오르비를 한다 < 한번 더 할 확률 50퍼 이상
-
안자는사람 손. 9
흠
-
ㅈㄱㄴ
-
시간이 갈수록 목표도 낮3 -> 높3 -> 낮2 이런 식으로 오르기도 했고...
-
일반학과들 작년에 비해 전체적으로 수시 경쟁률 높아졌던데 이유가 뭐임? 올해 수험생...
-
미쳤냐고함 당연함 이친구는 재수도 안함
-
제 친구 작수 현역으로 수학 백분위 99인데 올해 22 28 절어서 백분위 98로...
-
1. 1년 더 한다고 전혀 오를것 같지 않음 2. 현장에서 운이 3~4번은 따름
-
5명인데 제 인간관계 좀 정상이 아닌거임? 왜이러냐 애들이 다들 군대가서 군오수...
-
241128같은 문제를 절대로 현장에서 풀 수 없을 것이 분명함
-
좀 고민이네
-
부모가 성적표 열람 11
부모가 제 동의없이 임의로 성적표 열람할 수 있나요???
-
. 14
-
정시저장소 ㅁㅌㅊ 14
이대로 고 ? 훈수좀 가군이 젤 고민되 (성대 의상은 걍 넣어봄 쟤만 빨간색이길래)
-
수학 사설에서 원래 높1 뜰 시험지에서도 실수만 한 3~4개 쳐박고 2컷~높3...
-
후후
-
두창시치때문에? 진짜 도움되는게하나도없네 ㅋㅋㅋㅋㅋㅋ
-
근데 댓글 반응 왜 다 좋음?? 얘가 빨린다고?? 범죄자가??
-
ㅠㅠ감사합니다
An이 등비수열(이고 양수) 이면 log An이 등차수열이 된다는 사실은 당연합니다.
한편, 가수는 log An - [log An]입니다.
이때, 만약 [log An]이 늘 같은 값이 나온다면
가수 log An- [log An]은 등차수열이 됩니다. (잘 생각해 보시길)
그런데 문제는 [log An]이 늘 같은 값이 나오지는 않는다는 것입니다.
제한된 범위 내에서는 늘 같은 값이 나오겠지만, 그 범위를 벗어나면 다른 값이 나옵니다.
그러한 관점에서
B1, B2, B3, B4, B5 ... Bk-1, Bk, B_(k+1) +1가 등차수열을 이뤘다는 얘기는
마지막 항 B_(k+1) +1의 B_(k+1) 즉 log Ak- [log Ak] 부분에서
[log Ak]가 이전까지와는 다른 값이 튀어나왔다는 얘기이고, 이는 해당 범위를 벗어났다는 얘기가 됩니다.
아 제가 좀 빠뜨렸네요; 문제수정하겠습니다
[log Ak]가 달라졌다는건 지표가 달라졌다는 얘기고, 다시 말해 자리수가 달라졌다는 얘기입니다.
2^(4+(k-1)/16)가 두자리수에서 세자리수로 언제 변하는지를 찾아주면 되겠지요.
log2의 값이 주어져있으니 잘 풀어보면 됩니다.
여기서 2^1/16을 2^1/10으로 문제 수정했습니다. 제가 이전에 글을 잘못올렸었네요..