[박수칠] 미분계수와 함수 극한의 관계에 대하여
게시글 주소: https://games.orbi.kr/0007810298
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1월 공통 복습하고 2월부터 확통이랑 같이 하려는데 괜찬ㅇㅎ나요?
-
매일 4시간 공부하면서 6시간 자는 게 매일 8시간 공부하면서 4시간 자는 것보다...
-
안그래도 돈도없는데
-
ㅈㄱㄴ
-
내일 전화를.. 아니 근데 학원비 왤케 비쌈요 용돈의 n배나 되네..
-
할코디언 1
ㅇㄴ 그거 뭔데 ㅎㅋㅅ 변형이라고 나무위키에 있는거냐 개끔찍할거같은데 본사람있음??
-
솔직히 241110도 그냥 2분컷냈어서 그냥 이렇게이렇게 풀면 당연한건데 싶지만...
-
여붕이구한다 ㅇㅇ
-
망했다 4
2년 된 버즈 잃어버림
-
원장연 원장연하는거 ㅈㄴ 긁히네
-
내가 쓴 과만 폭인 것 같네....... 다른 데 넣었음 최초합인데 허허 추합이라도...
-
과탐이 재밌음... 표본이 고여도 잘하면 그만
-
집 근처에 (목동,강남권x) 꽤나 지점 많은 브랜드의 관리형 스카 새로운 지점...
-
고3때 갑자기 사탐 선택한 애들 이과 350명인 학교에서 다들 하남자라고 비웃었지만...
-
중시경건 3
마음이 따뜻해지고 경건해지는 참 좋은 말이다
-
근데 점공이 2
한꺼번에 몇명 들어왔다가 또 하루종일 정체네요.. 이제 진짜 쓸 사람들 다 쓴건가
-
재밌군
-
해볼까 Yoon's 가르칠순 있는데 가르쳐도 되나?
-
1과목 실수들(원장연이라는 나쁜말은 ㄴㄴㄴ) 다 투로 가거나 사탐런치는게 지금...
-
1. ∃원인∀결과(원인→결과) : "모든 결과를 일으키는 어떤 원인이 존재한다."...
-
잇올 6시 오픈하자마자 1등으로 입실하던 시기와 무단지각으로 벌점 60점 쌓은...
-
ㅈㄱㄴ
-
나도 과외 구하고 십다 17
시급 만원에 할 수 잇구요 신촌 쪽에서 30분거리에 허수친구면 좋구요 제가 오르비...
-
문명6 0
오랜만에 해볼까
-
23수능 메타로 갈거임 즉 이번엔 작수와 달리 생판 처음보는 단어낚시질 4 5개...
-
"사회복지학과 지망생" 사복과 출신 반수생: STAY...
-
뜌따이 되는거같노 .....
-
네
-
햄버거는 아직 무리인가봐요
-
CC는 뚫으면 되는거잖아?
-
여붕이내놔 7
여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔...
-
이정도 표본유입으로도 이렇게 정상화시켰는데 분위기,기본인원수보면 유입량 최소n배증간데과연,
-
난 오르비하려고 수면 시간 줄이긴 함
-
수능 컨설팅 받을려면 어디 학원가서 받는게 제일 좋을까? 1
나름 유명한 큰데 기준으로 말하는거 ㅇㅇ 자기 자신의 위치, 앞으로의 전망, 발전...
-
내신영어 의문점 3
내가 내신 버린 이유가 영어 이년때문임 고1때 지문 풀암기로 존나 빡공할때도...
-
세특은 정상임 그래서 bb일 듯 반박시 니말이 틀림 제발
-
과탐2에서 과탐1오는걸 원런이라고 부름? 아니잖아 그냥 사탐이 당연한거고 과거...
-
필수본 교재없이 0
인강만 들으면 안되나? 완자 이미 있는데 사야하나?
-
자유대한~~~ 0
그냥 갑자기 써봄...
-
U치환 0
행복 유치환 사랑하는 것은 사랑을 받느니보다 행복하나니라 오늘도 나는 에메랄드 빛...
-
기하 과외 구합니다 17
각각 22 23 25수능 22번틀 100점 22번틀입니다 시급2 대학 성균관대...
-
여캐일러 투척 18
이거나 올려야지
-
물1 왜 버림? 4
안 씻기만 해도 되는 과목인데
-
커하 4
교육청 76 99 2 99 98ㅠ 역시 오르비라 그런가 다들 너무 고능함...
-
ㅋㅋ 1
ㅋ
-
사탐런 X 자기객관화 상황판단력 GOAT 사탐개척임
-
사탐런 생윤사문하는데 생윤 개념강의 들을 땐 다 잘 이해하고 잘 외웠는데 기출가니깐...
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^