극한 상쇄 풀이는 오류가 아닙니다
h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어릴때 김밥먹다가 김이 목구멍에 걸렸는데 빠지지도않고 ㄹㅇ 디지는줄알앗음
-
래그래그 4
요세무주히녕안 요게갈러자
-
낮에 자면 난 사람이 아니다
-
그래서 우울했던거 아닐까 내가 책임질수도 없고 내가 바꿀수도 없는 문제를 가지고...
-
아 6
사람아니야
-
스크린타임 인증 5
오르비가 인생.
-
경쟁력이 없어서 그런가
-
그건 아니더라... 무슨 변화인진모르지만 요즘은 새벽에 깨어 있어도 죽고싶진않음 갑자기 왜 바뀐거지
-
옯생이 현생을 거의 다 따라옴 이와중에 아침에 못일어나서 알라미 한시간은 레전드네
-
뀨 1
뀨
-
응....
-
나쁘지않음굳이 가서, 그런걸 뭐하러 배움? 이럴 필요가 없음자기가 안 쓸꺼면 안 쓰면 되는 것임
-
트럼프 wwe 1
이왜진
-
내일 칼럼 하나 올라올 듯
-
ㅇㅈ 2
너에게 인스타는 뭐니? 삶이옵니다…
-
주위 사람들은 사범대는 학벌이 중요하지 않다고 하지만 4
사범대 합격했는데도 더 높은 사범대 가고 싶음. 수시6장 다 사범대 차례대로 썼는데...
-
그때사람들은없지만
-
그래서 친구한테 충격요법으로 뭔가 실험해줌. 당할일은없을듯
-
온수샤워 20분밖에 안하고 보일러 21도인데 이 작은집에 도시가스왜케많이쓰이냐
-
문득 든 생각
-
롤 스킨 454개 니케 스킨 다수 보유(하나에 9만원)
-
가끔 잠이 안 오면 모의고사를 봣는데, 이 문제가 기억에 남음. (내가 봣던...
-
좀 일찍먹는아침인거지
-
오르비가 문제임 6
그냥 느낌이 와 느낌이
-
근데 이게 도형이 10
ㄹㅇ 억지스러운 문제들이 잇음; 진짜 딱 그 문제에서만 가능한 상황을 만들어놓은,,...
-
김채원말고 다른 단발녀들은 다 장발이 잘어울릴듯 단발 왜하는지모르겠음 긴생머리가최고임
-
하하
-
오르비앱은 왜 3
들어와있는데 폰 알림이 와요
-
당장 레드후드를 복각하라
-
옯스타는 많이 쓰고 개조시도도해봤는데 본계 돋보기보면 그냥 마음이 편안해짐
-
교사경이 좋은거 아닌가
-
문학, 독서 수특 사올꺼
-
진짜 거지댐.. 딱 수특 몇개 살 돈 남김 이제 펴늬점도 못가것네
-
자러감 2
ㅂㅂ 눈 존나오네 입춘이라매
-
어색해..
-
나는 당당해 4
당당하게 앱르비로 알림본다!
-
뽑았네 슈발 아오 저번에 진 펑펑효과 안 샀으면 3만원 아꼈는데
-
빠르게 니케 숙제하러..
-
알림이 모두 핸드폰 알림으로 오는
-
자기전 지듣노 0
좀 뭐랄까... 차분해짐 사람이
-
여러번 봐도 굿일 듯
-
다운받아서
-
이번에 2지망 대학으로 옮기면 학기당 학비 + 기숙사비 합쳐서 총 비용이...
-
나도 좀 되는거 같다 생각햇는데 몇개 풀어보니까 수1 얘도 완성된 수준은...
-
이미지적어드림 93
아무도관심안가져주면슬퍼
-
분위기좋은곳에서 0
술한잔하고십네..
-
영어1 가능세계 보다보면 공부 안한게 후회되네
-
학고반수 제적 0
학사경고 기준이 학기당 취득성적이 F가 6학점 이상이면 학사경고 받고,제적 기준은...
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.