킬러 3문제 먹방
-음.. 시작부터 개같은 게 나왔구만!
-먼저 주어진 함수 f(x)의 개형을 그려보자. 저걸 직접 적분하는 건 미친 짓이니까 개형으로 추론을 해보자는 거지. 이때 y<0의 두 구간의 넓이를 각각 A라고 두자. 우함수니까 넓이는 서로 같아.
-g(x)가 f(x)의 적분에 대한 식으로 나타나있네. 먼저 a가 왼쪽으로 멀리 떨어져있을 때를 보자. g(x)의 그래프가 x축과 만나는 점이 2개가 돼야 하는데 그렇지 않지? Pass.
-특정 구간의 넓이가 저 그림처럼 2A일 때의 a를 보자. 이땐 조건에 부합하네. 그러면 이때의 a가 바로 α1임을 알 수 있어. Check!
-또한 a가 α1일 때 극소를 갖는 곳이 x=1이라고 했으니 p=1. 따라서 c=ln2.
-a=-1일 때를 보자. α1<a<-1 일 땐 어차피 안 돼. 그러면 교점이 3개가 되거든. 이건 자기 머릿속으로 상상해서 그려보도록 하고. 아무튼 a=-1이라면 조건에 맞게 g(x)가 그려짐을 알 수 있어. 즉 이때의 a가 바로 α2!
-a=0이라면 교점이 3개가 되므로 안 돼!
-a=1이면 교점이 2개가 되는군! 이때의 a는 α3야!
-a가 우측 상단 그림과 같이 특정 구간의 넓이가 2A가 되는 곳에 있다면 g(x)는 역시 조건에 맞게 그려지지. 이때 a는 α4.
-a를 오른쪽으로 더 멀리 잡아보면 여기서부터 g(x) 그래프가 조건에 맞지 않게 그려짐을 알 수 있어.
-그러면 결국 조건을 만족하는 a의 개수는 m=4야.
-(나) 조건을 보자. (나)는 a=α1일 때 만족한다는 것에 주의해! 그림처럼 f(x)는 우함수고 넓이 표시도 저렇게 y축 대칭을 이루므로 α1=-α4이고, 각 부분의 넓이를 A에 대해 표현했으니 이걸 가지고 분석해보면....
-드디어 알아냈다. 저 g(x)에 관한 적분은 부분적분을 활용해야 했어. g(α4), g(-α4)는 g(x)의 개형을 참고하면 바로 나와. 각각 2A, 0이지. 그리고 g(x)가 f(x)에 관한 적분이므로 g'(x)=f(x)고, xf(x)=xln(x4+1)-xln2는 기함수라는 걸 알아야 해.
-이것이 문제 정답 여부를 결정한다. 기함수를 -a, a까지 적분한 값은 0이란 거 알지? 이걸 이용하면 결과가 간단히 나온다. 즉, k=2.
-최종 답은 16.
-먼저 (나)의 식은 모든 실수 x에 대해 성립한다고 했으니 x=0, -a를 집어넣어보자. 왜 하필 0, -a냐면, f(x)가 우함수이고, 우함수는 y축 대칭이므로 0부터 a까지 적분한 값과 -a부터 0까지 적분한 값은 서로 같을 것 아냐? 그걸 이용하고자, 0, -a를 집어넣은 거지.
-a를 구해보자. a의 범위가 문제에 주어져 있으므로 이것까지 고려하면 a의 값이 나오게 된다.
-자, 이제 (나)의 식을 미분하고, 한 번 더 미분해보자. 이제 주어진 닫힌 구간 [0, a/2]에서의 함수 f(x)를 활용해볼 거야.
-(나)를 한 번만 미분한 식을 활용해보자. f(x)가 우함수임을 응용하기 위하여 두 번째 식에 있는 x+5π/3이 -x와 같아지도록 하는 x의 값 -5π/6을 두 번째 식에 대입해볼 거야. 근데 쓸모없는 시도였네. f(x)=f(-x)니까...
-그러면 (나)를 두 번 미분한 식을 사용하자. 똑같이 x=-5π/6을 대입하면 f'(x)=-f'(-x)이므로 f'(5π/6)을 얻을 수 있고, 5π/6은 주어진 닫힌 구간 내에 있으니 이 구간 내의 함수의 도함수의 식에 대입해서 정리하면 b, c에 관한 식을 얻을 수가 있지!
-다음으로 (나)의 식에 x=-a/2를 대입해보자. 그리고 닫힌 구간 [0, a/2]에서의 함수를 0부터 a/2까지 적분해보자. 그 둘을 우함수의 성질을 생각해서 비교해보자. 그러면 b, c에 관한 또 다른 식이 나오게 된다.
-그럼 b, c의 값들을 구할 수 있어!
-최종 답은 83!!!
-먼저 단순하게 구할 수 있는 것부터 구해. g(1)의 값을 통해 f(1)을 찾아내고, f(x)가 x=a에서 극대라고 하니 f'(a)=0임을 인지하고.
-자! 그 다음은 "뭐 어쩌라고"라고 생각하지 말고, 먼저 (나)조건부터 살펴보자. f(a)가 0인지, 아닌지에 따라 경우가 나눠지게 돼. 0이 아니면 그냥 g'(x)에 a를 집어넣으면 되는 반면, f(a)가 0이라면 극한을 통해서 g'(a)를 구해야지. 어차피 g(x)는 실수 전체에서 미분가능하다고 했으니 x=a에서의 g'(x)의 극한값은 결국 g'(a)랑 같잖아.
-먼저 f(a)=0일 때야. 이때 각 식이 극한을 적용했을 때 수렴할 수 있게 되는지 확인만 하면 돼. 먼저 우측 식. 분자는 f'(a)=0이므로 0으로 가고, 분모는 f(a)=0이니 0으로 가지? 0/0꼴이니 OK.
-다음은 좌측 식. 분모에서 f(a)=0이므로 분모에서 sin(πa)=0이어야 하네. a>0이라고 문제에서 주어져 있으니 a는 결국 자연수라는 소리잖아?
-f(a)≠0일 땐 그냥 g'(x)에 x=a를 집어넣으면 돼. 우측 식은 0이란 걸 금방 알 수 있고, 좌측 식에서는 분모에서 f(a)≠0이니 분자에서 sin(πa)=0이어야 하는군. 어라? 이때도 a는 자연수여야 하네.
-a가 자연수라는 것도 알았어. (나) 분석은 잠시 중단하고, (가) 조건을 봐보자. 먼저 g'(0). 만약 f(0)이 0이 아니라면 g'(x)에 x=0을 대입했을 때 나오는 g'(0)=0이 되는데, 이는 (가)와 모순이지? 즉, f(0)=0이야.
-g'(2a). f(2a)가 0이 아니라면 g'(2a)는 0이란 걸 계산을 통해 알 수 있어. 이때 계산 과정에서 a는 자연수이므로 2a는 짝수라는 걸 알아야 해. 그러나 g'(2a)=0은 (가)와 모순되지. 따라서 f(2a)=0.
-f(0)=f(2a)=0이라는 것도 얻었겠다, 이제 다시 (나)를 분석해보자고. (나)에서 f(a)가 0이냐, 아니냐에 따라 경우가 나눠졌었지. 먼저 f(a)=0일 때를 봐볼까. 그러면 g(a)는 x=a에서의 g(x)의 극한값과 같으니(g(x)가 실수 전체의 집합에서 미분가능하므로) 식은 저 중앙의 빨간 식으로 표현돼. f(x)의 식을 저 파란 식으로 표현하고, f'(a)=0임을 이용하면 f(x)를 단 2개의 미지수 p, a로 표현된(x 제외) 식으로 나타낼 수 있어.
-f(x)는 x=a에서 극대라고 하니 p는 양수이지.
-자, 이제 아까 그 극한식을 계산해보자. 이때 t=x-a로 둬서 극한식을 변형해야 해. 그리고 a는 자연수니 sin(πt+πa)=±sin(πt)인데 제곱하면 어차피 +가 되니 상관없어. 그러나 제곱하지 않은 1+cos(πt+πa)는 얘기가 달라져. 일단 저대로 두도록 하자.
-여기서 a가 홀수면 분모가 0이 되는 대참사가 벌어지므로 a는 무조건 짝수여야 해. 그러면 pa2의 값을 구할 수 있어!
-아까 p는 양수고, a는 자연수 중 짝수라고 했잖아. 그럼 pa2>0이라는 소리인데, -64/7라고...? 뭔가 이상하지? 이 결과가 나오는 경우는 f(a)=0일 때였어. 그 말인즉슨, f(a)=0인 경우는?
-f(a)가 0이 아니라는 소리네. f(0)=f(2a)=0, f'(a)=0임을 이용해 f(x)의 식을 p, a, c, d에 대해서 세우고, 중앙에 세운 빨간 극한식도 참고해서 접근해보자. 그러면 c=-2a임을 알 수 있지.
-g(0)의 극한식을 볼 거야. 식을 정리하다 보면 분모에는 x2이 있어야 하므로 d=0인 걸 알 수 있어.
-이제 극한을 풀면 pa2의 값이 나오게 돼.
-c, d, pa2도 구했겠다, f(x)의 식을 p, a에 대해서 변형시키고, f(1)=7을 통해서 a를 구해보자. 이때 a는 자연수임을 기억해야 해. 그러면 a=4가 나오고 p는 pa2의 값에 의해서 1/7로 나와.
-그럼 f(x)의 식을 다 구한 셈이지 뭐. g(-1)을 계산하고 정리하면 최종 답은 95!!!!!!!!!!!
-(나)에서 얻은 g(1)=0을 통해 (가)에 대입해서 g(2)를 구하고, g(2)=0임을 통해 다시 (가)에 대입해서 g(3)를 구하다보면... 결국 g(x)의 x 자리에 정수가 들어가면 함숫값이 0임을 확인할 수 있네.
-자, 여기서부터 굉장히 중요한 과정이 시작된다. 먼저 (나)를 미분한 다음 f(x+1)-f(x)=? 꼴로 고쳐. 그리고 (가)의 양변을 ex로 나눠. 이제 두 식에 있는 공통항 e-xg(x)를 소거하면 f(x+1)-f(x)에 대한 식이 보라색 식으로 표현됨을 알 수 있어.
-g(정수)=0임을 이용해보자. n이 정수라고 둬. 그리고 f(x+1)-f(x)=(뭐시기) 의 양변을 n부터 n+1까지 적분해서 정리해보자. 이때 좌변의 1번째 적분식은 치환적분을, 우변의 2번째 적분식은 부분적분을 적용했어. 그러면 맨 아래의 식처럼 매우 간결(?)하게 나오지?
-이제 n이 정수라고 했으므로 n=0, 1, 2, ...를 대입해가면서 파란색 적분식들의 값을 각각 구해보자. 구하다보면 어떤 규칙이 보이는 걸 인지할 수 있어. -자, 이렇게 나타나게 된다. 그럼 게임 끝났지?
-따라서 최종 답은 26.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
질문 15
안받습니다
-
속이 안 좋다
-
ㄹㅇ 3모보고 열심히해도 6모가서 다 떨어짐? 오늘 수업에서 쌤이 의미없다던데
-
안녕하세요 작년 수능 미적92점 받았습니다. (28계산 실수, 30실력부족) 제가...
-
좀 솔직해져 보자 55
학교 다니면서 가까운 이성 친구 없었다 조용히 좋아요 눌러. 나 진지해 진짜 없어서.
-
맞팔ㄱㄱ 9
-
루시드 니달리로 POM도 받음 포킹 조합에서 좋은건 알고 있음
-
현 예비 고3입니다 수학이랑 국어하느라 영어를 많이 못했어요.. 단어 조금 외우고...
-
매주 일요일 반나절은 책읽는데 써야지
-
대체 정신병걸린 선생새끼 하나가 뭔 지 오늘 기분 안좋다고 교무실에 문의하러 온...
-
백분위 95 98 1 97 100 원점수 91 92 ?? 48 50 올해 제...
-
알바가기싫다 4
우웅.....
-
인생불공평하다 7
자주느낀다
-
예비 고1입니다?
-
일본어 잘하는 법 : 수능 국어 잘하기 <- 이거 진짜인듯 ㅋㅋ
-
이왜진?
-
저녁 메뉴 추천 부탁드립니다
-
님은 이미 끌린거임 ㅇㅇ
-
반수해서 저러면 ㅅㅌㅊ인가요?
-
헌법재판소는 “탄핵 심판은 재판관 개인 성향에 의해 좌우되지 않는다”고 31일...
-
최상목, 내란특검법에 또 거부권... "별도 특검 필요한지 판단 어렵다" 1
최상목 대통령 권한대행 부총리 겸 기획재정부 장관이 31일 '내란 특별검사법'에...
-
아니면 의치한순가요
-
2옥타브 미 이상 내는 남자는 이제부터 여자로 간주한다. 15
남자는 태어나서 죽을 때까지 0, 1옥타브만 낸다.
-
입학처놈들 0
조기발표좀 해주세요.. 기다리다가 망부석될듯
-
감도 떨어지고 성적도 떨어지고 지능도 떨어지네
-
워밍업 무게로만 햇는데 평소에 최대한 빡세게한거랑 똑같이 힘듦 시발ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 말안된다
-
군수 질문좀… 9
저는 23수능 보고 중앙대에 진학했는데, 현재 전공이 너무 맞지 않는 것 같습니다....
-
필리핀, 간첩 혐의 중국인 5명 추가 체포..."군 기지 등 촬영" 2
남중국해 영유권을 놓고 중국과 분쟁 중인 필리핀이 중국인 5명을 간첩 혐의로 지난주...
-
물1 말고 다른 탐구로 가고 싶기는한데 할줄 아는게 물리만 있어서 다른 과목으로...
-
흠 3
새벽운동 뭐하지 실내 자전거vs야외 달리기
-
영일만해수욕장 카페
-
레전드 고대생 발생 28
연잡대는 복종의 정수리를 보이도록.
-
제설 제설 제설 제설 제설 제설 제설 제설 제설 제설 제설 제설 제설 제설 제설...
-
국어 과외 단가 8
이번에 국어과외가 들어왔는데 대상은 재수생 5등급 노베이고, 비문학만 기초부터...
-
이상민 측 "수사기록 의도적 유출…불법 사안" 반발 1
[이데일리 최오현 기자] 이상민 전 행정안전부 장관 측이 12·3 비상계엄과 관련한...
-
현역때는 69수능1 서바도 두세번 2인거빼고 1 이랫는데 요즘 강k보니까...
-
잇올 백색소음 0
ㄹㅇ임 이거 볼륨만 존나 크게 해서 틀면 됨
-
“자위하는 남성에 벌금 최대 1만 달러”…美서 발의된 황당 법안 8
미국의 한 주의회 상원의원이 ‘남성 자위 금지법’을 발의해 그 배경에 관심이 쏠리고...
-
안녕 4
곰방와
-
국일만식 해설 1
국일만 노베7일차인데 최대한 국일만이랑 내스타일이랑 섞어서 풀고 문제다풀고 문제에서...
-
1억6천만원에 동료 목숨 판 정보사…다시 떠오른 ‘간첩죄’ 1
‘블랙요원’ 명단 유출한 정보사 군무원 중형 선고받았지만, 간첩죄 적용 안 돼...
-
문과 수학 2등급을 ㅈ으로 봄
-
고2 69모 1틀 백분위 100 10모 쿨쿨졸아서 백98 아무리 컨디션나빠도...
-
왤케짜치지
-
[속보] 헌재, 중앙선관위 사무총장도 증인 채택
-
서연고 서성한 3
중경외시 건홍
-
사수생 오티는 어떨까 12
여태까지 대학이 다 맘에 안 들어서 오티 같은거 가본적도 없는데 비록 친화력이...
-
님들 태블릿 뭐씁? 10
???
191029도 풀어주세요
그해 수특과 상당히 비슷하더군요
만화가 2000년대 감성이라 너무 좋네요 ㅋㅋㅋㅋ