[1000덕] 기하 문제 하나 더 나갑니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일어서야해..
-
감점 겁나 크더라.. 올해 수능 보시는분들 공부 조금씩 미리 해두셈
-
난 가야할 때를 모르겟어
-
이투스 패스 결제완료 10
박모씨 강의 수강 준비 완료
-
상실의 시대 14
합법적 야설 goat 제 3인류도 좀 있었던 기억이
-
이게 잘 풀리면 아무도 걸어보지 않은 길을 묵묵히 걸어가서 대박을 터뜨리는 경우가...
-
이때 교수님들 ㄹㅇ 잡아와야함 문제 겁나 yummy 하네
-
물론 앞에 권들도 다 있음 어때 짱쩔지
-
한국수영탐탐 7
1+6+4+4+2+0
-
수능 4틀이 널린 커뮤...
-
유혹의 기술 18
으흐흐흐
-
에휴이.. 8
에휴..
-
제가 아는 사람중 최고였어요..
-
전 딱히 없음..숫자들은 그 자체로 모두 아름다움
-
일클1주차는 좋앗는데 아니 문학듣는데 배우는게 1도없음 처음엔참앗는데...
-
설전에만 해줘 제에발.....
-
저 영어 빼고 12개인데 국어가 절반을 차지함
-
애니 추천좀 2
전에 오르비에서 어떤 분이 무직전생 추천해줬는데 ㅈㄴ 재밌어서 50화 다보고...
-
https://piuh.sktelecom.com/common/selfCert 가서 신청 ㄱㄱ
-
하나도 없음..
-
국민대 다군에 적었는데 올해 상위권 대학에 다군이 많이 신설돼서 추합이 예년보다...
-
바로 앞에 있는 책들만 15
참고로 4권부터는 비닐도 아직 안 뜯음ㅋㅋ
-
윤도영 올어바웃 0
Hard 단계부터 스킬 알려주는 건가요?? 또선생 과탐 공대 생명 의대 논술
-
진짜 연예인인줄요 팔로우했습니다 앞으로도 좋은 게시물 부탁드립니다 아니 얼굴빼고님...
-
오야스미 1
네루!
-
극한상쇄되는거로 생각해라 하프모는 개쓰레기다 시발점만 해도 2는나온다
-
슬슬 짐정리를 해볼까..
-
드라마도 좋음
-
진짜 신기한 팀 1
라리가 15위면서 소시지와 노랭이한테 3점차 대패를 당하지만 꼬마와 바르샤는 찢음 ㄷㄷ
-
동국대 경찰행정학부입니다.
-
언제나옴
-
.
-
곧 자야징 0
-
기트남어가 뭐임 2
베트남어 정도로 선택자가 없다는 거신가
-
https://orbi.kr/00071395929/입결표의-맹점,-주의해야할-점...
-
나니아연대기 광팬이었음 14
수잔인지 수지인지 뭐시기는 ㄹㅇ 엄이라 생각함
-
현재 냥컴에 합격한 상태입니다 그런데 26학년도로 약대를 지원하고 싶습니다 문제는...
-
저는 해리포터와 비밀의방보다 사자와 마녀와 옷장을 먼저 읽음
-
저는 시이나 마시로
-
이거까지 놓치네 ㅋㅋㅋㅋㅋ 겨울 영입이나 몇개 해주십쇼 보드진분들
-
어디간건진 몰겠어요
-
78층까진 읽었었는데
-
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
나도ㅇㅈ 1
아니야이제그만할게
-
응애 3
다 자니
-
39클루, 메이즈러너 렛츠고 옛날엔 서점이나 도서관에서 책 진짜 많이 읽었는데
-
내여자가 될 자격이 충분함
-
밖은 너무 비싸요
-
입결표를 보며 주의해야할 점, 학과 고를때 신중하게 결정하기 8
물론 누백상으로 시각화시킨 자료라 어느정도 라인을 잡는데에는 도움이 되긴 하나,...
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?
기하황 ㄱㅁㅁ
님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!
3
문제 좋네요
여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요