정말 멋잇는 문제 4
평면 위에 2n개의 점이 있는데, 어느 세 점도 한 직선 위에 있지는 않다. 이 점들 중 n개에는 빨강칠을, 나머지 n개에는 파랑칠을 했다. 그럼 빨강점 하나와 파랑점 하나를 잇는 n개의 선분을 그리는데, 선분끼리 서로 가로지르지 않도록 (교점이 없도록) 그리는 방법이 항상 있을까?
당연히 증명이 주인 문제임미다ㅏ.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하나는 이름 실모단으로 지어서 수학만 시키고 하나는 담요단 해서 사탐만 시키는 중
-
조교 쉽지않네
-
못생기면 인생난이도가 너무높다는것
-
문제 읽는거조차 힘들어요 그저 갓가원
-
수학 담뇨단 전문으로 외모 빡세게 꾸며서
-
최상위권 맞춤 과외를 제공한다는건 양심 어디다 팔아먹은거임? 실존해서 말하는거임
-
이왜진
-
생윤 어렵나 0
흠냐리
-
누군가가 풀기에 따라 풀기 시작한 베르테르 77제 13
나도 풀이 올릴랭 4번 5번 6번 7번 심플 이즈 베스트. (그림 비율 제발 어케...
-
연고 국문과 12
올해 각 학교 문과에서 1~2등 찍는다는듯
-
저희 학교 시험이 조금 어려운 편이고 생1은 백호t 섬개완 듣고 있는데 이후에...
-
샤워해야되는데 4
물리나할까
-
새터,재수 질문 0
중앙대나 건국대 걸고 재수하려고 하는데 새터 필수일까요?
-
지금 스블 미적 살까말까 고민중인데
-
더 chill나 보도록 노력하겠습니다
-
작년 내신 생명 공부 했던 게 머리에 꽤 남아있어서 굳이 섬개완 말그 스개완으로...
-
안녕하세요. 합격자 후배님들! 저는 인하대 영어영문학과 22학번입니다. 인하대에...
-
홀로된 나의 슬픈 고독뿐
-
??
-
나 등장 2
현역 성대에서 재수 설경제로 업그레이드할 사람 등장
-
지방 축적 및 은닉죄, 뇌물김 수수죄, 허위체중 공개 및 유포 혐의로 체포합니다.
-
그러니깐 메가 따까리나 하고 있지
-
유베 사수생 6
오늘도 순공 0분..
-
실모 풀고 싶은데 다 2월 3월부터 나오는거 맞나요? 작년 실모 푸는거 도움 되나요?
-
some__day__fine 맞팔 ㄷㄱ
-
새터 썰 12
풀면 특정될거 같아서 사리기
-
어느정도인지 감이 안옴 숫자만보면 ㅈㄴ 적은데
-
공부하고 돈 벌면 머하노
-
매일 집으로 신문이 오는거에요??
-
레어가 팔렸어요 6
하하하하ㅏㅏ
-
내가 다녔던데는 다 썼음 소규모 학원도 아니고 주변 학교 애들 다 다니는 학원인데...
-
설렌다 으흐흐...
-
하는거 어찌 생각하시나요 둘다 노베입니다 정법은 너무 고인 것 같아서 고민되네요 2등급이었습니다
-
미적기하확통 0
현역 수시런데 학교 내신으로 미적기하확통 다함... 미적은 하는 중이고 기하는...
-
이거만 풀고 먹자 13
응
-
ㅇㅇ
-
내일 하겟습니다
-
아직 있으시나
-
ㅇㅂㄱ 4
-
타 커뮤에서 맨날 댓글로 키배 뜨던 놈 있는데 차단하니까 맘이 편함 뭐 알지도...
-
지 쓰레기통 못 찾겠다고 쓰레기 좀 대신 버려달라고 하더라...
-
잘햇다 응
-
김승리 tim 2
이거 작년에 한 거 보니까 기출 타이머 맞춰놓고 시간 안에 풀게 하던거던데 교재...
-
부모님이 보험 빵빵하게 넣어준 건 알고 있었는데 격리입원 100만원 독감진단비...
-
프사 변경했어요 3
회귀?함
-
질문받습니다 5
요즘 너무 행복함 티원 원딜명가 스매쉬 발굴에 담원의 재등장까지 이거지이거지
-
으응 하루에16시간씩 하면 고려대경영가능?
-
자허블에 더 부을거에요 밸런스 맞추기
-
ㅇㅇ
으으악!
너무어려운것입니다
먼가 그림문제같으면서도 그림으로생각하면안될거같애
증명을 못하겠다 으어
으악
어느 세 점도 한 직선 위에 존재하지 않기 때문에, 두 점을 이은 직선으로 나눈 두 영역중 한 곳에는 빨간점, 파란 점이 하나씩 남도록 직선을 그을 수 있다. 두 점을 잇는다. 지금까지 사용된 네 점을 배제하고 반복한다.
세 점이 한 직선 위에 존재하지 않으니까 두 영역의 점 개수가 같게 하는 직선을 항상 그을 수 있는 것 같은데....아닌가 으악
선분 개수가 n개가 안 되는거 같아요
설명을잘못하는듯...
너무 졸려서 ㅈㅈ,,
자면서 생각해보죠
n=1일때, 성립한다.
한 점씩 더해질 때에 기존의 점들과 교차가 발생하지 않으면 그대로 오케이, 교차가발생하면 새로 찍은파란점에서부터 교차가 먼저 발생하는 선분의 빨간점에 잇고, 남은 파란점은 그 다음 교차하는 빨간점에 잇고 하는 식으로 반복하면 교차가 존재하지 않는 새로운 배치가 발생한다.
수학적 귀납법..?
오, 되는거 같은데요
생각 좀 해봣는데ㅜ이거 안 되지 않나요. 새로운 배치를 만들 때 또 다른 교차가 생길 수도 잇는거 같은데