회원에 의해 삭제된 글입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
80퍼 이상은 알아보는 듯
-
고딩이라 모르는데 수강신청 광클도 매크로 만들 수 있지 않을까?
-
번호는 무시하세요 22수능 26과 비슷한 느낌을 주려고 노력함
-
지금 후회중이야 입좀 더 넣어달라할걸 ㅠㅠ 그땐 외모에 1도 관심없었음
-
대추라도 깔게요 3
대추
-
우왕!!! 14
진짜 오랜만이에요!!! 글 쓰는 것도 어색하네용ㅋㅋㅋㅋ 다들 조은 밤 보내세요!!!!
-
세상엔 너무 예쁜 옷들이 많아
-
야추라도깔게요 10
펑
-
캡모자 쓰니까 2
눈에 전체적으로 그림자가 져서 다크서클이 안보임
-
나 분명히 고1때 152였는데 어제 병원갔더니 154임 개꿀
-
검색창에 안 뜨게는 해줘야지 이 망할 것들
-
나만한 옯진남 없는데.. 서운하네
-
여장인증 7
하고싶다 2일차
-
공통 미적 다 구해요 가격은 맞춰봐요 아무나 연락주세요 ㅜㅜㅜ
-
무무보 2
?
-
약도 잘먹고있고 알바도 꾸준히 가고 있는데 내가 이런다고 걔가 살아돌아오지도않고...
-
셈퍼님 점공 계산기 12번인데요 예비 돈거는 2021 19번 2022 7번 2023...
-
대학커뮤니티 노크에서 선발한 동국대 선배가 오르비에 있는 예비 동국대생, 동대...
-
https://orbi.kr/00070949944 기타 항목에 어제 질문받았던 것들 추가했어요
-
저도 무물보할래요 14
빨리 질문 ㄱㄱ
-
수학못하고 국어랑 탐구 잘함 공부할때 담요필수에 마라탕 탕후루 요아정 필수로 먹음...
-
어떤 사람이 기하 올려달래서예각삼각형 ABC가 있다. AH_1, BH_2,...
-
친구하자
-
26학년도 수능을 다시 준비하면서 화1-> 지1으로 과목을 변경하였는데 내신 때도...
-
지들 꼴리는대로 이러는거임? 기준을 모르겠. . .
-
ㅇㄷㄴㅂㅌ
-
요즘 웹기반 밀고 있긴 한데 아무거나 ㄱㅊ해용 살면서 불편했던거 제보해주세요
-
1. 누가봐도 존예녀. 2. 1번여자보다 덜 이쁜데 귀여움
-
끄투 하시는분 없나 17
심심해요
-
물수능이라고 해도 어려웠음 ㅜㅜ 영어고자의 한
-
무물보 31
질문들을 부탁드립니다
-
레어구매완 10
흠
-
일단 언매0틀이었는데 몇점이었는지 궁금하네용
-
입시를 잘 끝마친 오르비언들은 너도나도 여행을 다니며 즐거운 삶을 영위할 것이다....
-
교대같이 면접도 있는 학교는 자신이 알아봐야함? 아니면 진학사 같은게 다 일정 알려주나요
-
미적두 좋구 짐치우기 귀찮아짐..
-
alert('이 글을 보신 분에게 알림을 보냈습니다!'); 1
진짜 안되냐 ㅠㅠ
-
레어뭐사지 4
흠
-
언제쯤 들을 수 있나요?
-
기출문제집 추천 9
과탐(생2) 기출 풀어야하는데.. 시중에 기출문제집 중에 뭐가 좋을까요? 마더텅...
-
수학해야겠다 3
돈벌준비해야제.. 적백이될것
-
본명 좀 치우고 싶은데
-
롤닉. 8
본명 피파 닉. 사랑과평화우정 딴겜. 본명 (근데 안함)
-
안녕하세요 이제 고3 올라가는 통통이 예비 고3입니다 일단 제목에서 보셨다시피...
-
젭알.... 당선... 내방학 갈아넣어서했다고오...
-
이거거든~
-
오후 끝나서 왓어요
-
바이바이 14
바이바이바이
x축
밑에 적어놓은대로
현우진 시발점 스텝1 문제중에
sin값 세개 비교하는 문제 풀이에선
현우진이 동경의 수선을 y축에 내렸어요
sin값이라고.. 이건 왜그런건가요?
'a=cos100도 b=sin150도 c=sin200도의 대소관계는?'
이라는 문제였어요
걍 보기편하라고 그런거 아닐까요
a설명할때 그렇게하신건가
a는 각변환으로 sin으로 바꾸셔서 구하셨어요
그리고 3개다 y축에 수선을 내리셨구요
근데 솔직히 그거 별싱관없을듯요
아니 왠지 ㅈㄴ불안해서 확실히 잡고가고싶은데
오르비놈들 다 배 벅벅긁고 눈팅하고 있을텐데
답변하는 분이 님밖에 없네요
감사합니다
제가 시발점을 안들어서 명확히 답변못드려서 ㅈㅅ해요 ㅠㅠ
그냥 그래프를 그려서 이해해보시면 안될까요
그렇게 한번만 해보시면 각변환도 그렇고
직관적으로 납득이 가실텐데..
그렇게 해서 이해하고 끝냈으면
여기에 이렇게 귀찮게 질문하지도 않았죠
삼각함수의 정의가 어쨌든 원위니까
원 위에서도 생각을 하는 관점을 정확히 짚고 넘어가고 싶어서 그런거죠;
단위원위의 삼각형이 움직이면서 삼각함수별로 좌표평면상 값이 달라지는게 싹 그려지지 않나요
쉽게 안되시면 10번이라도 그려봐요
단위원에 표시-삼각함수 개형 좌표평면에 나타내기
6분의파이 기준으로 쭉 다 점찍어서 이어보세요
그리고 각변환이 왜 성립하는지도 직접 비교해보시고
이 작업을 사인 코사인 다 해보시면
이해하기 싫어도 단위원이랑 같이
이해가 되실거같은데..
그렇게 사인 코사인 그래프를 다 그리시고 나서
(탄젠트=코사인분의 사인) 이거 떠올려보시고
탄젠트그래프에서 점근선이 왜생기는지도
생각해봐요
제가 처음 개념뗄때 이렇게했는데
삼각함수로 뭐가 헷갈리고 이러지는 않았던듯요
도형이 안보이고 머리가딸려서 틀리면 틀리지..