낫
Q. Can a boundary map on a long exact sequence of homology on manifold be interpreted as an actual topological boundary of a manifold representing the homology class?
A. True if the class is representable by a manifold with boundary. If $M$ is a compact $n$-manifold with boundary, it has a fundamental class $[M]\in H_n(M,\partial M)$ (coefficients being whatever as long as you're orientable w.r.t. them) and its image under the connecting homomorphism of the pair $(M,\partial M)$ is the fundamental class $[\partial M]\in H_{n-1}(\partial M)$ of the closed $(n-1)$-manifold $\partial M$ with the induced orientation. So, if $f\colon(M,\partial M)\rightarrow(X,A)$ is some map of pairs (the representing manifold of a class), naturality of the pair sequence yields $\partial(f_{\ast}[M,\partial M])=f_{\ast}[\partial M]$ and if $M$ is closed, this is zero, but that's not surprising cause the element then factors through $H_n(X)$ and the composite $H_n(X)\rightarrow H_n(X,A)\rightarrow H_{n-1}(A)$ is zero.
Intuitively, If $[\sigma]\in H_n(X,A)$, then $\sigma$ is some chain in $X$ with boundary inside of $A$. Since it represents a homology class, it should be a cycle, but it need not boundary anything entirely in $A$, so it could be a nonzero representative in $H_{n-1}(A)$. In other words, if $\sigma\mapsto X$ is a chain so that its topological boundary $\partial\sigma$ be mapped entirely into $A$. This boundary represents an element of $H_{n-1}(A)$. Although this is a more or less intuitive argument, this is exactly what's happening on topology. Algebraic machinery is just make this rigorous in algebraic language.
Q. How do you see the Alexander duality?
Rmk. Alexander duality: Let $X\subset S^n$ be a submanifold. Then $H_{p}(S^n\setminus X)\simeq H^{q}(X)$ where $p+q = n-1$. Or, $H_p(\Bbb R^n\setminus X)\simeq H^q(X)$ where $p+q = n-1$.
A. One of the most important interpretation of Alexander duality is via linking numbers of submanifolds, or more generally $k$ cycles. Consider $k$-cycle $z$ in the space $X$ of dimension $k$, and an $(n-k-1)$-cycle $w$ in the complement of $\Bbb R^n$. Then $w = \partial v$ in $\Bbb R^n$ for some cycle $v$. Now take the algebraic intersection (cup product) of $z$ and $v$. This defines a bilinear pairing $H_k(X)\otimes H_{n-k-1}(\Bbb R^n\setminus X)\to\Bbb Z$, called the linking number and gives an Alexander duality. Note that the linking number here is compatible with the linking number in the classical links in $S^3$. This is just a high dimensional analog. See this answer for more geometrical interpretation of high dimensional linking number https://mathoverflow.net/a/332250/323920
Under this interpretation, in case of knot $K$ not link in $S^3$, $S^3\setminus K$ can be thought as a "dual knot" which has linking number 1 with $K$. In particular, every knot complement has $\Bbb Z$ in the first homology, generated by a single "dual unknot" (meridian) of $K$.
One can actually define linking number from Alexander duality as follows: This time we let $M^p,N^q\subset\Bbb R^n$ be closed connected oriented manifolds with dimension $p$ and $q$ and $p+q = n-1$. Then by Alexander duality, we have $\Bbb Z\simeq H^p(M)\simeq H_{q}(\Bbb R^n\setminus Z)$. Now we consider the induced map $i_*:H_q(N)\to H_q(\Bbb R^n\setminus M)$ via inclusion $N\hookrightarrow \Bbb R^n\setminus M$. This map sends the fundamental class of $N$ to some integer times the fundamental class of $H_q(\Bbb R^n\setminus M)$, obtained by the isomorphism from Alexander duality. This integer is exactly the linking number of $M$ and $N$. You will see without much difficulty that these two back and forth are compatible.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
애기자러감 1
안잘거라는뜻
-
ㅇㅈ 3
-
진짜 잔다. 7
다들 편안한 밤 되십쇼. 샤따 내립니다 빨리 나가요 이제
-
착한사람 히히..
-
이시간까지 잠을 못이루는중
-
ㅇㅈㅇㅈ 1
하면 여자인증 인 셈이니까 여자인셈치죠
-
인생 망햇네 그냥 하
-
잘자 애기들아 13
애기들이라고 했는데 웬 틀딱이 들어왔노
-
다들 자러가니까 9
급격히 우울해지네.. 나새기왜살지
-
으흐흐 11
다이어트 중인데 으흐흐
-
비슷한 점수 반응들 보면 국숭세단 노려볼 만 한다는데… 진짜 이 점수로 국숭세단을...
-
카톡 알림 떠서 기분 좋개 확인하러 들어갔는데 병무청.. 내 알아 갈게요.. 그만...
-
억잠하러간다
-
너무졸려 3
자야겟다 진자..
-
제거 정도는 돼야 설치랑 비교할만하지
-
4시네 자야지 3
다들 잘자요
-
저장할거임
-
하씨.벌
-
존못이라 울었다..
-
그래서 조용히 삭제했음..
-
아무거나 해주세요 답할지 말지는 몰루
-
오늘초대형배설했네 12
글몇개를쓴거야이버러지새끼
-
아 불면증 5
어쨋거나 자는건 생리현상같은건데 어젯밤도 새놓고 또 졸리지 않다는게 이해가 가지...
-
정상 질문 받아요 16
이번에도 이상한 질문하면 철권으러 따라와
-
차이 별로 없으면 삼수 안하는 게 맞나요? 재수 하다가 8월부터 일이 생겨서 공부를...
-
다시 존예가 인증할 차례다
-
아...
-
질받하고 자겟습니다 24
무슨 질문을 하든 진실만을 말하겠슴뇨
-
너무졸렵다 6
-
ㅇㅈ 15
ㅈㅌ
-
도와줘라
-
4시 전엔 잔다 5
반드시 그래야만 해. 9시에 기상해야 한다고.
-
ㅇㅈ 2
3배각 공식 ㅇㅈ
-
26수능 잘봐서 5
서울대 합격해서 오르비 인증하고 싶다.. 25년도 소원은 서울대 최초합 뚫는거..
-
님이 이성한테 안 먹히는갑니다... 어떻게 아냐구요? 이씨발나도알고싶지않았어
-
마킹이나 가채점표 실수는 안했다고 확신할수있습니다 연대 경영이나 서울대 인문 가능할까요…
-
형아가 크리스마스 이브까진 해 오랬는데 시간이 안 나서 걱정이야
-
넌천재구나..
-
복싱하러 내잉 등록 갑니다.
-
국어 100이신 분들 11
누구 들었나용
-
이시간에깨잇는거 5
거의 한 4년만인듯
-
틀딱 기준 16
몇 년생부터임
-
그래도 큰 사고없이 무난하게 낸거같네욤.. 오류시비같은것도 없고 괴랄한 등급컷도...
-
자야겟다 2
진짜 잠뇨
-
센스는 타고나야 하는 듯.. 에효이
-
어떻게 고르는 건가요 고3때 정석민쌤 들으면서 와 정말 너무 명쾌하고 좋다 했는데...
-
통모짜핫도그 3
요즘잘자쿨냥이
-
인증 17
첫번째 댓글의 주인공이 되어보세요.