미적분 출제 예상 (2)
평가원 기출 문항 또는 잘 만들어진 문항의 특성 중 하나는
출제 의도에 부합하지 않는, 다시 말해 불필요한 작업을 피하는 것이
문제 풀이에 도움이 되는 것이라고 생각합니다.
S_1과 S_2를 직접 구하려고 하면 쉽지 않습니다.
그러나 선분 OT, 선분 OQ, 그리고 호 TQ로 둘러싸인 부분의 넓이를 x라 할 때
로 접근하면 쉽습니다.
한꺼번에 구하기를 포함해 문제가 원하는 대로 풀이를 이어가는 것이
원활한 마무리에 도움이 될 때는 평가원 시험지에서 어렵지 않게 찾아볼 수 있습니다.
2025학년도 대학수학능력시험 9월 모의평가 (미적분) 28번은
적분 퍼즐에다가
역함수 적분 약간,
그리고 주어진 적분 조건의 f'(2x)sin(ㅠx)를 g(x)-x로 작성하지 않는
불필요한 작업을 피하는 것 정도로 정리해 볼 수 있겠습니다.
만약 f'(2x)sin(ㅠx)를 g(x)-x로 바라봐야 했다면
문제에선 g(x)-x를 주었을 것이라 생각해 볼 수 있습니다.
적분 퍼즐이 아닌 역함수 적분에 초점을 두고자 했다면
다음과 같은 조건을 확인할 수도 있었을 것입니다.
역함수 적분에 초점을 두었다면 23 수능 29번이나
22 수능 30번 같은 형태였을지도 모르겠습니다!
sin(ㅠx)가 x=n (n은 정수) 일 때 0이기 때문에
x=n일 때 g(x)=x임을 활용해 역함수 적분을 간단히 처리할 수 있었는데
x=p이면 sin(x)=q일 때 sin(x)=q라고 x=p가 아님에 초점을 두고자 했다면
21 9월 21번의 향을 조금 담을 수도 있지 않았을까 생각해 봅니다!
2023학년도 6월, 9월, 수능은 15번에 귀납적으로 정의된 수열 추론
22번에 삼차함수 결정 (극한, 평행/대칭/회전이동+구간별, 변화율로 정의된 함수)
그리고 미적 4점에 삼각함수 극한 (도형) 이 출제되었습니다.
이후 세 유형 모두 힘이 빠지며 아래와 같이 비교적 생소한 문항이 출제되었습니다.
이후 2025학년도에 출제된 문항 중 마음에 드는 것이 다음과 같습니다.
세 문항을 아래의 문항과 함께 살펴보기 좋다고 생각합니다.
이러한 맥락에서 항등식의 양변 적분 출제를 조심스레 예상해 봅니다!
(19 6월 가형)
(19 수능 가형)
아래는 2022학년도 대학수학능력시험 (미적분) 24번을 활용한
항등식의 양변 적분 문항입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보수로 남았다간 돌 맞을듯
-
우리학교 에타 꼬라지 13
심각성을 모르는 다수도 존재하는것같다.
-
이재명이 될거같긴한뎅
-
우리학교 2찍남 소굴인데 낼 학교 반응 궁금하네 ㅋㅋㅋ 0
교사새끼들은 싹다 좌파라 개지랄하긴할듯 ㅋㅋㅋ
-
모집정지면 ㅈ되는데 ㄹㅇ 하………
-
Wow 입갤 ㅋㅋ
-
무조건 실리고 6 9 수능 중에 무조건 나온다
-
와우
-
“전 세계에서 가장 빨리 계엄령이 철회된 나라“ 가능함?
-
뭐 큰 거 준비하나? 뭐지 왜 아무것도 발표를 안해 ㅈ됨을 감지한 건가
-
무섭다
-
실화가 3시간 컷인데 분량이 되냐?
-
쿠키영상도 있다네요~
-
형이 군대에 있어서 쫄았음뇨
-
ㄹㅇ
-
신소재 전화기컴 고민중이었는데..
-
낼 운동가도됌? 1
가도되려나
-
조선일보도 손절 2
-
하아... 진짜 나라가 이상해지고 있다
-
입결 좃된것같아요
-
알바몬 보니까 시급도 높고 앉아서 아웃바운드로 전화만하면 기본급180만원 나온다는데...
-
쇼맨쉽 goat노 ㅋㅋㅋㅋㅋ
-
궁금
-
수1 마더텅 14
시발점하고 마더텅으로 바로 넘어갔는데 16, 18번 같은 4점 문제들이 계속...
-
역시우리장난꾸러기윤카
-
대통령기능뭐가잇나 하나씩다써보는것같음 핸드폰 처음산 어린애마냥
-
닉변합니다 1
고경제 저격수->고정외 저격수
-
[속보]"정부는 금융·외환시장 안정 위해 무제한 유동성 공급 등 모든 조치 총...
-
진짜 운도 타고나고 기본적인 정치는 끝내주게 잘하긴한다 바로 유튜브 라이브 키고 생방은 ㅋㅋㅋ
-
국민의힘 계보 쭉 따라서 올라가면 김영삼인데ㅋㅋㅋㅋ 윤두창 쫘파출신이라고 전땅끄만 있다고 착각했나
-
메가스터디 국어영역 1타강사 강민철 선생님의 2026학년도 커리큘럼 영상이 몇시간 전에 공개됨
-
쎄가 빠지게 재수해서 서성한성적 만들었는데 이재명이 대통령된다하네
-
다같이 기뻐했는데............. 다들 기억나심? 참 세상일 모른다
-
이새끼 관종력 ㅈ돼긴하노 ㅋㅋㅋ
-
이건 최후의 발악이라고밖엔....
-
옳고 그름과 상관 없이.. 참모가 작전을 참 드럽게 못 짠다 생각했는데 의대 증원이...
-
일단나부터 ㅋㅋ
-
먼 일인데요 9
자다 방금 깻는데 대충 요약좀 해줘
-
진짜 E선마 탈론..이거 못 막거든요?
-
3시간짜린데 지루하진 않노 ㅋㅋㅋ
-
God suck-yeol (신석열) 바로 계엄령 정상화 1
https://youtu.be/cYRkZmBuDqI 오늘도 디시를 눈팅하는 신 석...
-
야!!!!! 야!!!!!!! 뭔일있었냐??? 이러는데 걍 별 일 없었다했음ㅋㅋㅋㅋㅋ
-
국힘 얘넨 정을 줄라 하면 스스로 떨구는구나;
-
대통령 100퍼임? 이번 사건으로 여론 완전 기울텐데 판사들도 권력에 순응하고 남은...
-
아버지랑 tv로 보다가 걍 3시간만에 끝나서 tv끄고 자러들어감 ㅋㅋㅋ
-
거부권도 존나 좋은 스킬인데 이걸로도 잘 안풀리니 계엄 —> 궁극기 함 충동적으로...
저는 올해도 상수 또는 직선구간을 갖는 함수 나와줬으면 하네요..분석글 좋아요 ㅎㅎ
2019학년도 대학수학능력시험 9월 모의평가 (나형) 21번
ㄴ 이런 느낌도 좋을 듯하네요
왠진 모르겠지만 비슷한 맥락에서 2017학년도 대학수학능력시험 (가형) 21번도 떠오르네요~~
마지막 문제 답이 뭔가요?
196입니다! 풀어주셔서 감사드립니다