Residual Finiteness
Residually finite: For any nontrivial element $g\in G$, there is a subgroup $G_1$ of finite index in $G$ which does not contain $g$.
Locally extended residually finite (LERF): If for each finitely generated subgroup $H$ of $G$, for any element $g\in G - H$, there is a subgroup $G_1$ of finite index in $G$ which contains $H$ but not $g$.
Theorem A. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and covering group $G$. Then TFAE:
(1) $G$ is residually finite.
(2) If $C\subset\tilde{X}$ is a compact subset, then the projection map $\tilde{X}\to X$ factors through a finite covering $X_1$ of $X$ such that $C$ projects by a homeomorphism into $X_1$.
Theorem B. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and a covering group $G$. Then TFAE:
(1) $G$ is LERF.
(2) Given a finitely generated subgroup $H$ of $G$ and a compact subset $C$ of $\tilde{X}/H$, there is a finite covering $X_1$ of $X$ such that the projection $\tilde{X}/H\to X$ factors through $X_1$ and $C$ projects homeomorphically into $X_1$.
위의 theorem B는 특히 중요한데, 만약 $\pi_1(M)$이 surface group $H$를 포함하고 있고, LERF라면, $M$이 virtually Haken임을 내포한다. 다시 말해서, surface group을 representing하는 immersed surface in $M$이 적절한 finite covering을 취하면, embedding으로 lift가 된다는 것.
자명하게 LERF는 RF보다 강한 조건이다. Theorem A,B는 LERF와 RF의 기하학적인 의미를 담고 있다. 보통 해석할 때, $\tilde{X}$는 universal cover를 염두해둔다. 이 경우, Residual finiteness는 다음과 같이 해석된다:
$\pi_1(X)$ is residually finite if and only if for every compact subset $C$ of $\tilde{X}$, there is some finite cover $X'\to X$ with $C$ projects homeomorphically.
만약 $X$에 어떤 geometric structure가 있다고 한다면, $X$의 sequence of finite covering $\tilde{X}_i$가 있어서, 점점더 그것의 universal cover $\tilde{X}$에 가까워진다, 수학적으로는 Gromov-Hausdorff converge한다고 볼 수 있다. Hyperbolic 3-manifold에서는 이것을 geometric convergence라고 부른다.
Examples
1. $M$: a Seifert fibered 3-manifold then $\pi_1(M)$ is LERF.
2. $M$: a hyperbolic 3-manifold then $\pi_1(M)$ is LERF. (Virtual Haken/Fibered Conjecture)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저만 느끼는건지 모르겠는데 6모때부터 생명 출제 기조가 달라진것같이 느껴져요 특히...
-
적중예감 프리, 파이널, 추석특강 19회차 오답 복습+개념 복기하기 만약에 실모...
-
장이 ㄹㅇ 그냥 편찮으셔서 변비 아니면 설사 중 택1인데 뭐 규칙적 똥타임도 없고...
-
행복하고싶네 3
어떠케해야하지
-
첫사랑 연애썰 3
첫 (짝)사랑(이 다른 남자와 연애한) 썰 도 첫사랑썰인가에 대하여
-
손창빈 스타일 3
손창빈 선생님 국어 스타일이 어떤느낌인가요 그읽그풀 vs 구조독해
-
ㄷㄷㄷ……… 수능장에서 잘못 알고 갔다가 틀리면 어떡해
-
첫사랑 연애썰 21
풀었다가 메인갔었음 ㅁㅌㅊ.
-
되는 거임?
-
르게만들지는 마요 워우워우워
-
가 자꾸 친구추천에 뜨는데....친추 함 걸어볼까요....
-
탑급이네
-
새로 사실건가요 아니면 작년에 쓰던거 들고갈건가요 두개있는데 2년정도 된거라...
-
편의점 커피 2
머가 맛있나요 너무 달지 않은 것 중에..
-
앞에 코사인제곱 붙어있는애를 코사인함수는 우함수니까 -붙여서 2x-13/12파이로...
-
실모풀때 지장갈정도로 조금잔건 아니겠죠?
-
what doesnt kill you makes you stronger 1
예전엔 저말이 위로가 되었는데 요즘은 그냥 모든 일이 날 죽이려드는것 같음 날...
-
??
-
한 10억쯤 땡기면 범인 한 100억쯤 땡기면 뭐지
-
퀄리티 ㄱㅊ은 것만 몇 개 알려주세욤
-
현장에선 건드려보지도 못 했는데 기출 풀어보니까 쉽지않네..
-
솔직히 사문 6
적중예감만 13회차 다 풀고 가도 공부량 상위 11% 안쪽 아닐지...
-
유빈이아닌가
-
수능때 후드티 2
입고가서 모자덮어쓰고풀어도되나요 안정감있고좋을텐데...
-
다들 21
설랬던 일화좀 꺼내봐 나 외롭다 설래곳ㅍ음
-
하하 연애메타 0
오르비 잘 안굴러가겠네
-
인생 좆망해버린거 같은 느낌이 온다
-
시험기간 과제 동아리 실습 무한반복...
-
근데진짜오르비너무잔인함 17
동테를 ㅈㄴ 개구리게만들어둬서 오르비존나해서은테달아야함ㄹㅇ.
-
형냐들 저 마음에 안 들죠.
-
이러면 나 속상해서 기만할거야
-
수학 하방 유지 7
다른 과목은 몰라도 수학만큼은 하방이 88점입니다 정확히는 공통은 거의 항상 다...
-
국어 푸는 순서 4
문학말고 독서를 먼저 푸는거 어떰?? 요즘 문학이 어렵고 독서는 쉬워진...
-
제 경험담인데
-
다들 안녕히 주무세요 18
오늘 너무 바쁜 하루라 피곤해 뒤.질거같아서 자야겠어 행복하시길 바랍니다 모두들
-
임정환 실모기준 보통 한개씩 틀렸음
-
ㅈㄴ 오랜만에 떠올려보는 그이름...
-
왜냐면 나거든
-
와뭐냐
-
맨날 존나잘풀었다 싶으면 갑자기 막 2번 20번 이런거 단순실수로 틀림 결국 수능...
-
그래서 태어나서 짝사랑만 해봤다면 안 믿으시겠죠
-
포기해야함?
-
돌이켜보니까 뭐 오답 제대로 한것도 두달간 없는거같고 과장인지 진짜인지 모르겠는데...
-
탐구 평균이니까 13 맞아도 2로 들어가는거죠? 국 1 영 1 탐구1 1 탐구2 3...
-
물리 아예 노베이스 인데 생지 하다가 생명이 너무 안맞는거같아서 물지로 바꾸려는데...
-
좋은 아침입니다 5
12시라길래 오 설마 낮인가? 싶었는데 밤이군요..
-
진짜 미신같은데 노트에 이상형 엄청 자세하게 몇개여도 상관엊ㅅ으니까 100개여도댐...
-
미분 파트 만큼 좋은가요? 개인적으로 미분 파트 감명깊게 듣고 적분 찔끔 맛만 봤다...
-
분석해 드립니다
우익수