합성함수 인식부터 치환적분까지
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다만 이번편에 다 쓰면 너무 길 거 같아서, 다음 편으로 넘길게요.
좋아요랑 팔로우 누르고 기다려주시면 곧 돌아오겠습니다 ㅎㅎ
0 XDK (+10)
-
10
-
투투끼얏호우 1
해보고 싶은데 지금까지 해온 생지가 너무 아까움..
-
6974모의고사 그리고 11월 수능
-
라끼얏호우 0
사실 신나지는 않아요
-
고2 영어 2~3 진동하는데 하루 한 시간 적당하죠? 5
감 유지용으로 일주일에 한번씩 듣기 듣고 독해는 한 시간만 하고 있어요 2~3이긴...
-
이 재밌는걸 자기들끼리만 하고 있었다니
-
사귄지는 꽤 됐고 한 쪽은 재수, 한 쪽은 고3인 1살차이 커플이면 헤어지는 게 맞음?
-
그냥 재미로 해보는거니 본인 생각 적고 가주세용
-
출처 : 크럭스 n2211 이번에도 이거랑 비슷하게 가지 않을까요? 본인이 42라 희망사항임
-
제발..
-
카나라즈
-
빌었어 3
여친 생기게 해달라고 빌었어
-
수특 레벨 2,3 사설 실전모고 10회 22~25 모의논술,기출문제 정도면 합격하는데 충분할까요
-
수학이 너무 낮아 고민이네요. 과는 상관없습니다
-
치킨시킬까 5
닭튀김이 먹고싶구나
-
마더텅 풀면서 도표 문제 풀면 웬만해선 다 맞긴 하는데 시간이 좀 오래 걸린다는...
-
아 0
좀 돌아버릴거 같다
-
얼마가 적당할까? 부르는게 값인가..
-
우리나라가 다른 선진국에 비해서 과학기술, 특히 기초과학 관련해서 투자가 빈약한...
-
경북의 논술 3
답은 다 맞아야 붙나요? 혹시 작년에 붙엇다는분 보신분 계신가요? 의대 논술 경북대...
-
탐구 과목 고민 0
예비 고3입니다. 이제 슬슬 정시를 준비하려고 하는데 탐구 과목을 무엇응 해야할지...
-
몇 시간을 자도 뭘 해도 아무것도 안 돠고 피곤하기만..
-
현역(언매 기하 생1 지1) 62444 재수(언매 기하 생1 지1) 52352...
-
3뜨면 30살되도 생각날듯 ㅋㅋㅋㅋ
-
키 160 중반에 BMI로 따지면 표준체중임 근데 기초체력 좀 딸리는 편이고 운동...
-
숙명여대 수학 50프로보는 학과 가능할것 같나요?? 스나로 수학40보는 건국 ㄱㅊ을까요??
-
일반 본인은 23수능에서 백분위 99(미적분 원점수 92(14,22틀))를 받음....
-
문과 누백 15퍼센트 하려면 평균백분위는 몇정도 인가요??
-
수,영은 4등급각오했는데 국탐 조질지는 꿈에도 몰랐음.. 국탐으로 대학갈려했는데...
-
상관없을까요? 강기분 나오기 전(12월말)까지 할거라
-
오리비 오댕이 <<<얘네보다 학벌 후달림
-
수능 기하는 아예 고려 안하는게 맞겠죠? 시험 좀 어려운편이긴했음..
-
잘모르겠고 4
겨우 지파 98넘는 내가 학점 많이 보는 이대로스쿨은 힘들 것 같고 (사실 이쯤되면...
-
미적 정규반은 3월부터 수1,2도 한다던데 방학때 두개 다니다 공통반 드랍하는...
-
22학년도랑 비교할 때 오답률 순위 1~9위까지가 올해 오답률이 더 높고 당시 지구...
-
입시 잘 모릅니다. 이 성적으로 지거국도 못가겠죠ㅠㅠ 어느정도 대학 갈수있을까요?...
-
ㅈㄴ행복하게 공부할텐데 지구과학 행성 공전 관련 문제 애니연출로 시각화 뙇 박아주면...
-
하게 되엇습니다. 6평 81 9평 91 10모 94어ㅕㅆ는데 수능 영어듣기에서...
-
영어반영 개ㅈ인 서울대랑 영어반영 고트인 연세대랑 어케 비교를 하겠음 연대 쓸 성적...
-
아 모르겠다 나는 ㅋㅋㅋㅋㅋ
-
수능에선 재능&멘탈이 다하는 것 같다 노력도 노력이지만 2
내 친구 올해 여름방학 2개월 전 화학-> 사문으로 돌리고 여름방학 시작할 때...
-
구매 가능한거죠?
-
내년에도 생지하면 큰일나겠지?? 한지랑 지구랑 시너지 좋다는데 어카지
-
속발음 없애는법 1
흔히들 속발음을 없애야한다 속발음을 없애야 글을 빨리 읽고 내용이해를 제대로...
-
인강으로 이원준t 독서 커리 탈까 고민중인데 현강안가고 인강으로만 배우기에는...
-
(그림 수정) 질량과 길이가 각각 m, 4L이고 밀도가 균일한 막대가 세 받침대에...
-
찬우쌤 프리패스를 방금 샀는데요 생글은 강좌담기로 담아지는데 잡도도해는 안담아져요ㅠ...
-
으흐흐
-
물론 전적대(예정) 탈출이 지금으로는 제1순위 소원이긴 한데 반수생치고는 학교 내...
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?
합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요
딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다
저 다 봤어요 이제 내려주세요
개추
좋은칼럼 잘보고갑니당