지로함수 어려운 문제
정시파이터인데, 이거 진짜 풀어야 하나요?
고2 2020 9모 문제인데 진심 머리 오류나는 느낌이네요...목표 2등급
(다시봐도 뭐라는지 모르겠네..)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭔가 막 이렇게 배포하기에는 저도 허접하고 모르는게 많은 9모 지구 3등급따리...
-
이제 잘게 다들군밤
-
이미지 2
써주세요 ㅋㅋ
-
개인적으로 너무 좋음 질투는 나의 힘은 공감이 ㅈ되고 화체개현은 그냥 시가 ㅈㄴ...
-
지금 갑자기 괜찮아짐 뭐라도 될 것 같고 암튼 곧 있으면 끝난다고 생각하니까 기분...
-
근데 이거 내일 수거하면 모레 도착할텐데 풀 수 있는건가
-
대부분이 처싸우는 글이거나 뻘글인데 왜 팔로우하지
-
시험 전날 광주 전라도 아는 지인에게 받은 3년 숙성 홍어회와 5년 발효 묵은지를...
-
수능 배정 1
남자는 남자끼리만 여자는 여자끼리만 배정되나요?
-
언매 + 문학 컷냈을 때 40분 안으로 들어오신 분 있으심?
-
세서 찍는거 못하나요? 어느정도는 12345 개수 맞추는지 궁금..
-
맞나요 ㅇㅇ 음식을 영화로 접한 병국의 요리사는 ㅇㅇ음식에서 아이디어를 얻어...
-
도표 벼락치기 4
하 어떡하죠..
-
화작이 복병이다 0
ㄹㅇ
-
독해력 문해력이 사람 발목 거하게 잡는구나... 어릴 때 퀴즈과학상식 이딴거 읽는게...
-
불안한 마음은 이해하는데 평소처럼 하는 게 더 좋아요
-
제목 그대로 얼마 안남은 수능 전까지 이투스 패스 공유해주실 분 구합니다:)...
-
고2입니다 모고 성적은 공부는 올해 시작한거라 3모 55 6모 76 9모 85...
-
잡담 태그 알림을 꺼두시는게 좋습니다.
-
올해는 벌써부터 잠이안오네 갑자기 막 떨리고
-
수능을 올해로 떠나보내는 나의 라스트 댄스 가자!
-
세번째 수능 내 아홉번째평가원 짧다면 짧지만 길다면 너무나도 긴 너무 너무 길었던...
-
23 공통 24 미적 1컷 몇 나올까
-
지금이 더 어려워진거 같은데... 그땐 20 21 충분히 풀만했는데 왜 지금이 더...
-
마무리 0
하는 법들 잘 알고 계시죠? 화이팅
-
+30에서 -70을 뺀 값을 정의하는 용어가 있는데 이게 뭐였죠? 기억이 안나네요
-
수시 납치도 꽤 있을거 같고
-
내일이면 3일 남고 두 회분 남았는디,,
-
나는 강민철이다.. 나는 미시마 유키오다.. 나는 임마누엘 칸트다.. << 한번씩...
-
난 차단딱3명했음 23
쿠쿠리씨랑 나머지2명은 외모기만이너무나심했던사람
-
안녕하세요. 기출조각입니다. 이번 학년도 수능이 이제 진짜 코 앞입니다. 칼럼도...
-
바로 대각선 뒤에 감독관 의자 있는데 계속 안 앉아있다가 영어때 갑자기 쭉...
-
올해 육구모랑 작수 국어 다 풀긴 했었는데 또 다 풀어봐야할까요
-
레어 어케삼 0
갖고싶은거 많은데 경매로 남꺼 뺏는건줄 알았는데 아니네
-
등급 컷을 정상화시키고 있다는 거임. 22 독서 24 문학 24언매 19화작 1컷...
-
인간에 대한 의무가 생명체에 대한 의무를 정당화시킨다는건 0
일단 확실한 오류가 맞음 일반적 서술이라 저기서 말하는 '생명체'는 특정 범주로...
-
로그아웃 되는 거 나만 그런가
-
블라인드를 먹은 글이 너무 많구나..
-
옆에는 와서 국어 전에 뭐푸나했는데 이감풀고있고 옆에는 탐구때 뭐 잘못해서 실격처리...
-
유베랑 나폴린가
-
ㅈㄱㄴ
-
단권화+개념 최종 복습 or 기출 복습+실모
-
는 모두 부사격조사
-
제발 백분위98만 나오자 제발
-
그냥 문학에서 ㅈㄴ 좃뺑이 당하고 정신차려보니까 종료 5분전에 독서 마지막지문 찍고있었음
-
쪽지 하나하나 보내면서도 아직도 못 받은 학생들이 많고 혹여 나중에 보고 발을 동동...
-
끌끌끌
-
키오프 하늘이…
-
지금 집와서 0
방에 혼자 앉아있는데 뭔가 슬슬 수능이 다가오는게 몸으로 직접 느껴진다고 해야하나나...
계산력 증진을 위해 한번쯤은 푸시는걸 권장합니다
삼각함수에서도 똑같이 쓰이는 방법인데, “주기함수”의 경우 교점 개수를 세는 방정식을 계산할 때는, “주기 개수 X 주기당 교점 개수”식을 이용합니다
수학을 잘 하고 싶으시면 강윤구 강사 커리를 듣는걸 추천드립니다
N=1일때는 그냥 대충 계산하면 풀리니까 n=2부터 봐보죠. N=2일때 f(x)는 y=1,2,3과 각각 x= 0,12,60에서 만나죠?
1<f(x)<2인 범위에서 x는 12/4 즉 4주기를 지나고, 한 주기당 2개의 교점을 지나므로 1<f(x)<2의 범위에서는 4주기 * 2개 = 8개를 지나는 것을 알 수 있지요
2<f(x)<3인 범위에서 x는 60-12 즉 48만큼 지나고, 이는 48/4 즉 12주기를 가진다는걸 알 수 있습니다.
한 주기당 4개의 교점을 지나므로 12*4=48개의 점을 지나는 것을 알 수 있죠
종합해보면 n=2일때는 8 + 48개 즉 56개의 점을 지난다는걸 알 수 있습니다
이 문제는 수능에 나오기엔 적합할까요?
저 문제에서 메인을 뽑으라 하면 “주기함수의 실근 개수“니까요. 이건 당연히 위에서 말했듯이 삼각함수로도 충분히 나올 수 있습니다
개노가다 그래도 풀긴 해야져