[에라둔] 비례 상수와 역학적 에너지
저번에 업로드한 피직솔루션 비례식 파트 중에서 다소 생소할 수 있는 내용으로
비례 상수의 일치가 있는데 이부분에 대해 짧게 칼럼을 써볼까 합니다.
비례식의 특성을 몇개 뽑아보면 다음과 같습니다.
1. 곱셈, 나눗셈으로 이루어진 관계식은 비례식끼리도 성립한다.
비례식끼리는 곱셈 나눗셈이 가능하다는 의미입니다.
(F=ma면 F비 = m비*a비)
2. 비례식끼리는 일반적으로 덧셈 뺄셈이 불가능하나 양쪽 비례상수가 동일할 경우 가능하다.
A=B+C라는 관계식은 A비 = B비*C비 가 불가능합니다.
단, 이 때 B비와 C비의 비례상수가 동일할경우엔 해당 식이 성립하게 됩니다.
3. 두 비례식의 덧셈, 뺼셈 과정에서 한쪽 비례식이 0:0일경우엔 덧셈 뺼셈이 가능하다.
(0:0) 에 (2:3)을 더할 경우엔 2:3이라는 결과가 도출되는것에 문제가 없음을 의미합니다.
4. 서로다른 두 비례식의 비례상수를 일치시키기 위해서는 각 비례식에 어떠한 상수비율을 곱해준다.
A비율과 B비율의 비례상수가 다를 경우 A, B라는 비례식에 각각 a와 b를 곱하여 일치시키는것이 가능함을 의미합니다.
여기서 포인트는 모르는 미지수 a,b를 곱하나 1, k를 곱하나 그게 그거라는것입니다.
3의 경우에는 우리가 정지된 두 물체가 t초 뒤 속력이 2:3이면 가속도 비율이 2:3임을 도출할 때 종종 쓰입니다.
(dv를 2:3으로 도출했다는것 자체가 0:0 과 나중속력 비율을 가감했음을 의미합니다.)
물리학 역학에서 덧셈, 뺄셈이 사용되는 구간을 뽑아보면 어떤것이 있을까요?
지금 제 머리에서 바로 떠오르는것들을 뽑아보자면
속도의 변화량을 구하고자 할 때?
역학적 에너지의 합을 구할 때?
정지된 시점으로부터 두 지점간의 거리를 구할 때?
오늘 다루어볼 이야기는 역학적 에너지에 대해서입니다.
역학적 에너지는 다들 알겠지만 mgh 와 0.5mvv의 합입니다.
보통 우리는 위치에너지의 비율을 구한다면 m비율과 h비율을 곱할것이며
어떠한 물체에 대해서는 단순히 h비율만을 구합니다.
어떠한 물체에 대해서 운동에너지 비율을 구한다면 vv비율을 구할것입니다.
문제는 무엇이냐, 우리는 역학적 에너지의 보존법칙을 이용 할 때
운동에너지와 위치에너지의 교환 및 이 둘의 합이 일정하다는 특성을 이용할 때
가감을 굉장히 많이 합니다.
그러나, 일반적으로는 비례식끼리는 덧셈 뺄셈이 성립하지도 않을 뿐더러
이 둘의 비례상수를 일치시키려 하기도 뭔가 낯설게 느껴질것입니다.
이 때 우리는 앞서 언급한 4번 성질을 이용합니다.
A 비례식 = 2:5:8:9
B 비례식 = 4:3:6:8
우리는 두 비례식의 비례상수가 같은지 다른지 알 수 없으므로 A+B비율을 바로 구할 수 없습니다.
그러나, 우리가 두 비례식에 각각 서로다른 상수 또는 어떠한 비율 a:b 또는 1:k, k:1 을 곱하여
비례상수가 같아졌다는 가정하에 문항을 푸는것은 상관없습니다.
A 비례식 = 2:5:8:9
B 비례식 = 4k : 3k : 6k : 8k 로 변형하고 이 둘의 비례상수는 같아졌다라고 가정하여도 무방합니다.
위와같은 가정을 했다면 아마 k를 구하는 방향으로 문항풀이 방향이 잡히게 될것입니다.
사실 근원적으로는 결국 mgh, 0.5mvv 를 상수로 나타내는 꼴이나간혹 v비율로 접근하다가 역학적 에너지에서 방향성을 놓치는 경우가 있어
그럴 때에 위와같은 방식으로 생각하면 편할것입니다
최근 문항 중 위와 같은 원리가 적용될만한 문항을 몇개 가져와보았습니다.
24년 7월 시행 모의고사 20번.
우리는 역학적 에너지 보존 법칙에서 h변화는 v제곱 변화에 비례함을 익히 알고있을것입니다.
일단 p, q, r, s, t에 대해서 한번 높이 비율을 구해보면
1 2 1 1 2 가됩니다.
속력 제곱의 비율을 구해보면
16 9 rr ss 0 이됩니다.
즉, 위치, 운동 에너지의 비율을 표현하면 아래와 같겠죠.
우리는 위치에너지와 운동에너지의 비율을 구했으나 이 둘의 비율은 비례상수가 일치하지 않으니
자유롭게 가감할 수 없습니다.
이 때 아무곳에 미지수 k를 곱하여 비례상수가 동일해졌다는 가정을 하고 k를 구해도 될것입니다.
저라면 편하게 높이 비율에 k를 곱하여 위치, 운동에너지의 비율을 구해보겠습니다.
그럼 이제 문제풀이의 방향은 저 k를 구하는것으로 바뀔것입니다.
(또는 r,s 와 k의 관계식을 구한다든지)
이제 문제 조건을 하나씩 써주면 되겠습니다.
s와 t 구간은 역학적 에너지가 보존되므로 k+ss=2k 로 ss가 사실은 k라는 값이 나옵니다.
s, t를 보니 h변화 k에 운동에너지가 k가 변합니다.
구간 qr도 h변화가 k니 운동에너지가 k가 변할테니 rr=9+k가 되겠습니다.
이제 마지막 조건 역학적 에너지 손실조건을 써보겠습니다.
p에서 q뺀값의 3배가 r에서 s뺀값이라합니다.
(7-k)3=(rr-k) 인데 rr-k는 위에서 9임을 구했습니다.
k=4가 되겠네요.
따라서 r/s는 root13 / 2가 될것입니다.
k를 곱하는 방식의 장점은 자신이 원하는 방향에 k를 곱하여 식 조절을 본인 원하는 방향으로 할 수 있다는것입니다.
이러면 역학적 에너지 역시 비율적 계산이 가능하겠죠.
다른 문항도 하나 준비해왔습니다.
위 원리를 통해 한번 풀어보시기 바랍니다.
2023년 6월 시행 모의고사 20번
일단 마찬가지로 h의 비와 vv의 비를 나타내보겠습니다.
역시 이 두 비율은 비례상수가 일치하지 않아 가감할 수 없습니다.
h비율에 k를 곱하는게 편할거같지 않나요?
위와 같이 바꾸고 이제 자유롭게 가감할 수 있습니다.
문제 조건에서 역학적 에너지 감소량은 pq의 2배가 rs라고합니다.
(3-2k)2 = (k+x-1)
qr 구간은 역학적 에너지가 보존될테니 2k+1=k+x
이제 이 둘을 적당히 연립해주면 답이 나올것같습니다.
그냥 k+x 자체를 대입해버리죠.
6-4k=(2k+1-1) k=1
자연스레 x는 2가 되겠네요.
검산해보니 pq 손실량이 1, rs손실량이 2니 조건에도 부합합니다.
r에서의 속력은 q에서의 root2배가 되겠습니다.
위 풀이가 익숙해지고나면 곱해주는 k값이 눈대중으로 보이는 경우도 있을것입니다.
(머리속에서 나도 모르게 k에 1,2,3... 씩 대입)
한문제만 더 풀어보도록 합시다.
2023년 9월 시행 모의고사 19번
마찬가지로 원점 O 그리고 p, q, r에 대해 위치비를 구해봅시다.
6 1 2 x 문항에선 x를 구하는 문항이 되겠습니다.
이제 속력의 제곱도 구해봅시다.
0 2 1 0
이 두 비례식의 비례 상수를 맞추기 위해 아래비례식에 k를 곱한다면
누가봐도 아래에 곱하는게 훨씬 편해보일것같습니다.
6 // 1 // 2 // x
0 // 2k // k // 0
여기서 포인트는 q, r은 역학적 에너지가 보존이 되는데...
그럴거면 그냥 k를 x-2로 놔도 되지않을까요?
그래야 2+k와 x가 같을테니까요.
6 // 1 // 2 // x
0 // 2x-4 // x-2 // 0
이제 문제조건, op 손실량의 2배가 pq손실량이라 나와있으니
(6-2x+3)2 = (2x-3-x)
18-4x = x-3
x=21/5
여러 풀이방법이 있겠지만 제 풀이 대부분의 방향성이 비례식을 사용하는것이다 보니
저는 위와같은 풀이를 선호합니다.
전체를 묶어 계산하다보니 상황파악을 내가 어디까지 하고있는지를 알기 쉽다는게 장점같습니다.
0 XDK (+500)
-
500
-
3뜨면 30살되도 생각날듯 ㅋㅋㅋㅋ
-
키 160 중반에 BMI로 따지면 표준체중임 근데 기초체력 좀 딸리는 편이고 운동...
-
보통 일반고에서 설대 수시 지균 2명 다 최저 맞추나요? 3
궁금합니다..
-
숙명여대 수학 50프로보는 학과 가능할것 같나요?? 스나로 수학40보는 건국 ㄱㅊ을까요??
-
일반 본인은 23수능에서 백분위 99(미적분 원점수 92(14,22틀))를 받음....
-
문과 누백 15퍼센트 하려면 평균백분위는 몇정도 인가요??
-
수,영은 4등급각오했는데 국탐 조질지는 꿈에도 몰랐음.. 국탐으로 대학갈려했는데...
-
상관없을까요? 강기분 나오기 전(12월말)까지 할거라
-
오리비 오댕이 <<<얘네보다 학벌 후달림
-
수능 기하는 아예 고려 안하는게 맞겠죠? 시험 좀 어려운편이긴했음..
-
잘모르겠고 4
겨우 지파 98넘는 내가 학점 많이 보는 이대로스쿨은 힘들 것 같고 (사실 이쯤되면...
-
미적 정규반은 3월부터 수1,2도 한다던데 방학때 두개 다니다 공통반 드랍하는...
-
22학년도랑 비교할 때 오답률 순위 1~9위까지가 올해 오답률이 더 높고 당시 지구...
-
입시 잘 모릅니다. 이 성적으로 지거국도 못가겠죠ㅠㅠ 어느정도 대학 갈수있을까요?...
-
ㅈㄴ행복하게 공부할텐데 지구과학 행성 공전 관련 문제 애니연출로 시각화 뙇 박아주면...
-
하게 되엇습니다. 6평 81 9평 91 10모 94어ㅕㅆ는데 수능 영어듣기에서...
-
영어반영 개ㅈ인 서울대랑 영어반영 고트인 연세대랑 어케 비교를 하겠음 연대 쓸 성적...
-
아 모르겠다 나는 ㅋㅋㅋㅋㅋ
-
수능에선 재능&멘탈이 다하는 것 같다 노력도 노력이지만 2
내 친구 올해 여름방학 2개월 전 화학-> 사문으로 돌리고 여름방학 시작할 때...
-
구매 가능한거죠?
-
내년에도 생지하면 큰일나겠지?? 한지랑 지구랑 시너지 좋다는데 어카지
-
속발음 없애는법 1
흔히들 속발음을 없애야한다 속발음을 없애야 글을 빨리 읽고 내용이해를 제대로...
-
인강으로 이원준t 독서 커리 탈까 고민중인데 현강안가고 인강으로만 배우기에는...
-
(그림 수정) 질량과 길이가 각각 m, 4L이고 밀도가 균일한 막대가 세 받침대에...
-
찬우쌤 프리패스를 방금 샀는데요 생글은 강좌담기로 담아지는데 잡도도해는 안담아져요ㅠ...
-
으흐흐
-
물론 전적대(예정) 탈출이 지금으로는 제1순위 소원이긴 한데 반수생치고는 학교 내...
-
감정이 복받친다 3
우울글을 마구 쓰고 싶어진다
-
필자는 시도때도 없이 졸았다는 것을 알 수 있군.
-
각인가
-
실제 등급 아니고 그냥 궁금해서 씀 국(화작) 수(미적) 영 지구1 사문 2컷 1컷 4 1컷 1컷
-
근데 이과에서 공대 안 맞을꺼같은 애들도 걍 공대감? 3
나는 애초에 공대로 교차될거같은데 걍 공대가면 깔개될거같아서 쓸 생각도 안해봤는데...
-
국숭 중심으로 써야할거 같긴한데 동홍 질러볼 수는 있을까요..?
-
같이 넣어볼만함가요
-
삼반수 고려중인데 내년에 선택과목을 바꿀까싶어서요 이번 2025수능 확통100점인데...
-
제발…
-
보통 논술 일반과 커트가 어느정도에요? 컴솦 쓰긴 했는데 논술하게 될 줄은 몰라서...
-
기출 2회독 마치고 1월부터 한주 한번 하려는데 찾아보니까 수학은 1월에 하프모...
-
정말 암담하네요 뭔가 팁이 있을까요???
-
상남자식 원서질 ㅋㅋㅋㅋ
-
연전전vs설전정 8
고거슨 과잠 대결이었구욘
-
어디가 더 재미써요? 두군데 다가부신 분들 좀 얘기 듣고싶넹
-
탈릅할까 12
현실에도 친구가 없고 여기서도 없네.. 탈릅해도 나 없어진 사실 조차 아무도 모를듯…
-
아님 의대증원 고려해도 힘듦…?
-
받는게 나아요? 텔그 기준 70퍼 뜨던데 ㄹㅇ
-
미국 여판가
-
요즘 왜 안나옴뇨 트럼프 뽑힌김에 선서 한번 더 하면 안됨뇨
-
반수 고민 0
현역 23331인데 공부하느라 지쳐서 반학기동안은 놀고 싶은데 휴학하고 반수하면...
-
올1컷으로도 경제경영 택도 없네 ㄷㄷ 작년엔 성적 택도 없어서 폭난거만 알앗는데 이정도일줄은..
어 에라둔 선생님이네 언제 부활하셨데
22년 가입자분께서 기억하시는게 저한테는 더 신기합니다 ㅎㅎ
물리로 꽤나 유명하셨으니.. 중학생 때 물리공부할때 참고 좀 했었읍니다ㅎㅎ..
에라둔!에라둔!에라둔!
goat
예전에 옆동네에 무료배포하셨던 독학서(?)자료 돌림힘땜에 본적있는데 언제적인지
돌림힘 Goat
계산하다가 v_0같은거 하나하나 쓰기 귀찮아서 생략할수 있지 않을까?에서 착안해서 쓰던 그거네요
뭐라 말로 풀어서 설명하기가 참 힘든데 잘 명시지화 해놓으신듯