2021연논 질문 하나만 해도 될까여
3-2 해설에 일반성을 잃지 않고 사각형이 탑처럼 쌓여 올려져 있는 첫번째 그림 형태를 가정하고 풀이하는데, 아래 그림도 포함된 풀이인지 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
비문학에 광명을 찾게 해준 선생님인데 여기서도 글 많이 썼는데 아쉽네요 .. 이제...
-
응애
-
석민쌤 ㄱㅇㅇ 0
700
-
2? 겠지.. 6번 29번 풀엇는대 틀렷네 미친것 ㅠㅠㅠㅠㅠ
-
마지막 실모로 하려는데 추천 좀여
-
화작 91 확통 84 영어 2 사문 48 경제 47임다..
-
모고로 대학가는 거 아니지만 걍 갈 수 있나 해서... 언미영생지 90 84 1...
-
언매88(공-10,선-2) 미적80(공-16,선-4) 영어90 한국사47 화1 47 생1 45
-
문학 이지선다로 남겨놓은거 다틀렷노… ㅋㅋㅋ
-
서성한은 안정권이었을까? 국어 4-5 수학 1-2 영어 1 화학 3-4 지학 1-2임
-
75 88 2 44 32 아니 씨발새끼가 옆에서 다리 존나떨어서 듣기 씨발련아...
-
안깝칠게요안깝칠게요안깝칠게요안깝칠게요안깝칠게요안깝칠게요안깝칠게요안깝칠게요안깝칠게요안깝...
-
하석진 키가 181cm 이던데 그거 고려해서 이 외모에 키 181이면 첫인상 투표떄...
-
1월 - 의대증원 떡밥 돌기 시작. 2월 - 2000명 의대증원 구체화 3월 -...
-
이퀄 성적공개 7
79 88 98 44 40 국어는 진짜 똥같네 손가락걸기로 찍은게 몇개가 나가는거임...
-
종로였던걸로 기억하고 개정 전 통합국어였던 시절이었음 풀고나서 60점대 나오길래...
-
국 79 >> 89 수 74 >> 58 영 70 >> 63 정법 44 >> 42...
-
인줄 알았으나 14번 a=2 k=2구해놓고 합을 6이라고 체크 했네 ...ㄹㅈㄷ
-
생명 41 지구 37 떴는데 ㅅㅂㅋㅋㅋㅋㅋㅋ 국수영 무난무난하게 내놓고 과탐에서 불질러버리네
-
물생 수능전까지 볼 기출 문제집 추천해주세요 프솔이랑 루트는 너무 문제가 많아서요 ㅠ
-
11퀄 본사람 0
필적확인문구는 자살방지용이었노…
-
국어도 이만하면 내 실력치곤 선방같고 수학만 좀 어떻게 해결하면 좋을거가타
-
10덮 5
국어 96(매체틀..) 문학 은근 까다로운데 컷은 높네.. 독서가 쉬워서 그런가...
-
감독관 분들 안 돌아다니시죠?
-
하.
-
제일 도움많이받은샘인데 아쉽군
-
킬러는 없는데 거저주는 문제없이 다 빡빡해서 개어려운듯 영어는 그니마 좀 할만하고
-
나중에도 안나오려나요.. 아쉽네여ㅠ
-
이퀄 국어 0
문제랑 별개로 지문 구성이 쓰레기임 어렵게는 내려고 정보는 줄이고 싶은데 글은 못...
-
아기들 기엽다 8
어제 할로윈이엿다고 오늘도 유치원에서 준 호박랜턴 머리띠 쓰고 다니네 ~.~*. 기여워
-
대성 계약종료 1
국어-김민경 수학-정병훈 안성현 지구-김지혁 물리-안철우
-
탐구로 정상화 시킬려했는데 개망햇네 진짜 화학도 1페이지에서 하나 틀림 아오 이 바보야
-
어려웠던거 맞음? 와 약기운때문에 꾸벅꾸벅 졸면서 시험쳐가지고 지문 내용도 기억 안 나네
-
1번 틀리고 관료제에서 잘못읽고 얼타고 애휴..
-
국수 커하 나이따 나이따
-
11덮 후기 1
언 확 영 정법 사문 96 81 100 47 50 확통 실수 안 하는 법 없음?...
-
적성에 맞으면 의사만큼은 아니지만 꽤 벌고(특히 공대) 근무환경 훨씬 좋고 잘...
-
??
-
69에 안 나옴?
-
내가 세상에서 제일 소중하다 이지랄 ㅋㅋㅋㅋㅋ
-
아래 어금니에 있긴한데 얼음으로 검사했을때 많이 시리진 않았어요 그래도 치료...
-
웃기네 5
영어 점수 7덮 100 8덮 90 9덮 100 10덮 90 11덮 100 ??
-
...
-
유베삼수생 이퀄 17
92 100 91 33 50
-
3등급 받나요?
저도예전에 질문해봤는데 돌리면 똑같아요.
직각삼각형이나오는게 의문이였는데 임의의삼각형으로 논하는거여서 사실상 위의 경우만 논해도 충분해요.
음.. 어렵네용
이렇게생각하면되요. 하나를 고정시키잖아요.
그러면 아래삼각형은 일단무시하세요.
그러면 특수한상황 일반적인상황으로 나누어져요
그러니 두개다논할이유가없죠
3-1 풀어보시면, 직사각형 PQRS의 변이 변AB, 변BC, 변AC 위에 있을 수 있기 때문에 세가지 삼각형이 나오는데, 세가지 경우 모두 공유하는 변의 길이가 1/2k (단, k=변AB or k=변BC or k=변AC) 일 때 동일한 최댓값을 가짐을 알게 되실 겁니다.
따라서 직사각형 P'Q'R'S' 를 첫번째 그림처럼 잡든 두번째 그림처럼 잡든 결과는 동일하므로, 편한 첫번째 경우로 푸는 것입니다.
그리고 사실 이런 연결형 문제는 대놓고 3-1 결과를 이용하라는 거여서...
자세한 설명 감사합니다. 좀 더 생각해봐야겠습니다 :)
3-1 풀이까지 적다가 해결하셨을 거라 생각해 지웠습니다.
그림과 같이 S=(a*l)/2 일 때 최댓값을 가지는데,
ㄱ, ㄴ, ㄷ 세가지 경우 모두 같은 삼각형이기 때문에 당연히 넓이 역시 동일하므로
a*l = b*m = c*n 이 성립합니다.
따라서 I 의 탑처럼 쌓인 경우와 II 의 경우 둘 다 같은 넓이이기 때문에 굳이 II 의 경우를 고려하지 않아도 되는 것입니다.
친절한 해설 정말 감사합니다 이해됐습니다 !! :)
설명을 너무 못했는데 이해하셨다니 다행이네요...
다시 보니 S=(a*l)/2이 아니라 (a*l)/4인데 잘못 적었네요 ㅋㅋ
ㄱ 의 경우 S = (a*l)/4
ㄴ 의 경우 S = (b*m)/4
ㄷ 의 경우 S = (c*m)/4
일 때 최대인데
a*l = b*m = c*n 이므로 세 PQRS 전부 같은 넓이라는 것을 말씀드리고 싶었는데 너무 대충 넘어간 것 같습니다..
그림처럼 P’Q’R’S’ 를 설정하는 과정이 다르고 넓이를 구하는 과정이랑 개념 자체가 달라고 결과적으로 넓이가 같다면 일반성을 잃지 않는다는 말씀이신가요??
아 죄송합니다. 어떤 부분이 궁금하신 건지도 모르고 다른 부분을 설명하고 있었네요...
계산해보면 그림의 2번의 경우 x = 1일 때
즉, 삼각형 ABC가 직각삼각형일 때 최댓값 (a*l)/3 을 가지는 것을 알 수 있는데,
돌려보면 결국 1번과 동일한 상황이라 그렇습니다.
정성스럽게 답변해주셔서 정말감사합니다!!
시간날때마다 고민하고 있었는데
덕분에 이해됐습니다. 감사합니다!!