[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
우리가 성불하지 않았음을 보여주자
-
남고라 그런가 걍처먹고 공론화도 안됨ㅋㅋ
-
걔네 아니었으면 지금보다 컷 2점은 더 낮을거 같은데 ㄹㅇ...
-
모고는 딱히 준비는 안해봤고 모르는 개념(나머지정리) 하나 못풀고 2등급 나옴 일단...
-
페이 왕 1
-
생윤 임정환 쌤 들을건데 교재패스 올라와있어서 뭐 개념만 듣고 현돌하시는 분들...
-
뱌뱌 2
뱌뱌
-
옛날에 친하던 학원쌤들한테 수능성적 자랑할 생각에 기분이 좋네요 6
흐흐 열심히햇는데 통과 5등급이였던 내가 이세계에서는 쌉고수? 흐흐흐
-
??
-
미적러 고1수학 복습할때 복소수,순열 이런거 걸러도 되나요? 3
복소수 순열과조합 집합과명제 얘네 걸러도 될까요
-
당사자 ㅈㄴ 고통스럽나봄 한국에선 의사 못하는거 아닌가 이정도면 동덕여대 꼴페미...
-
수능썰 0
수능친 학교 사물함에 이상혁이름 있었음
-
오레가노 2
왕왕 왕 왕 왕 왕왕왕왕
-
. 메가대로만 나오게 해주세요
-
오르비의 정상화 2
-
성대 한양?
-
2020년 졸업자면 학생부 20% 들어가는 전형에서 불이익 있으려나요 ? 광역...
-
평소에는 아 공부 못해요 라고 대답하긴하는데 이게 베스트인가유?
-
난 왜 영어 1만돼도 지금 스나노리는학교들이 싹다 안정이 되냐 나만 ㅈ버그걸림?
-
제발제발제발젭랍제발제발벫
-
제가 작년에도 원서접수땜에 재수를 했는데 올해도 정보를 전혀모ㄹ랐다가 오늘에서야...
-
나 진짜 궁금해 3
연애하면 엔돌핀 폭발함?
-
진짜 어리석은 선택일까...... 진짜 좋은분 만났지만 약 용량을 안늘려주면 나도...
-
새벽에 전애인에게 연락하는 정신나간 짓은 하면 안됨 왜그랫을까진짜증마류ㅠㅠㅠ
-
중앙대 정치국제 공공인재 사회 경희대 경영 경제 무역 행정 7개중에 어디가...
-
미적 3점짜리까지만 다 풀어지고 4점은 못건드는데 수1 뉴런 수2 뉴런 미적 시발점...
-
님들 언매 66/19 2등급 가능함?
-
하루에 2-3지문정도 꾸준히 풀려는데 뭐가 좋을까여?
-
근데 그땐 스카이말곤 대학라인도 몰랐어서 그냥 첨부터 설컴이 목표였던거같음......
-
동덕 화이팅 1
!!
-
수능 3년째 2
언매 3~4틀 유지 중이고 전부 2등급이였는데 화작으로 갈아타면 점수 많이 오를 가능성 있다고 봄?
-
미적 2컷 의견이 너무 갈리네 어디에선 원점수 80이면 무조건 2등급이라 하고...
-
지금 시발점 끝내고 자이 기출 푸는데 별 1개짜리 정답률 60퍼 문제도 여러개...
-
최저를 물생에서 물지로 맞추려는데 전교1등 친구들 포함 지1을 들어봤던 친구들은 다...
-
6평 어디서 보지 12
모교는 애매한데
-
일단 오늘 하루는 확실히 공부 열심히 하게 됨 순공 시간 처음 재보는데 재는 이유가 있었구나
-
스타벅스 질문 2
아아메 두잔짜리 쿠폰있는데 한잔 한잔으로 나눠먹을수있나용?
-
평가원 #~#
-
"예비 재수생" 고3때 만족할만한 성적 받고 대학 가는건 뭐냐고요? 그분들은 조기...
-
설약을 416.5를 잡고있네 설치를 잘못본줄? ㅋㅋㅋㅋㅋ
-
강아지 7
보고싶구나 집가고싶다 고양이카페도 가보고싶다
-
오엠알 밀린거말고 중복체크나 인식안돼서 오류떴던 경험 있는분있나요 ??
-
닥전인가요? 참고로 여자임
-
사탐 0
사문은 낄건데 정법 생윤 ㅈㄴ고민되네 진짜
-
노래방 다녀오겠음뇨 10
1시간 간다
-
일반적으로 얼마정도 쓰는지 궁금해요 주로 어디에 돈을 쓰는지도 궁금해요
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ