[칼럼]수학성적은 갑자기 오른다. 백분위78->99의대
안녕하세요. 저는 수학 현역3->재수1로 한의대에 입학한 후, 높은1로 올려서 의대로 옮긴 케이스입니다.
수험생활동안 경험한 2번의 수학성적의 계단식 상승에 대해 얘기해보려합니다.
수능 수학성적은 차근차근 꾸준히 오를까요?
아닙니다. 모든 수험생들은 필연적으로 정체구간을 맞이하게 됩니다.
(물론 처음 입문해서 개념과 기출을 풀어볼때는 성적이 당연히 오릅니다.)
이때 시간은 꾸준히 투자하는데, 성적은 안 오르고, 맞게 하고 있는지 감이 안 잡혀 답답해집니다.
실력은 오른거 같은데도 성적은 안올라 고민이 되기도 하구요.
그런데 이 구간을 돌파하면 계단식으로 성적이 갑자기 팍 오르게 됩니다.
신기하게도 불과 얼마전과 달리 문제를 풀 때 시야가 넓어지고 사고가 간결해지는 느낌을 받습니다.
오늘은 이 정체구간을 돌파하기 위해 제가 했던 '두가지'에 대해 얘기해보려합니다.
(제가 생각하는 수능성적 그래프를 러프하게 그려보았습니다.)
1) 필연적 사고를 학습하고 체화해라
수학 문제의 조건과 단서들에는 논리적인 인과관계가 있고 그에 따라 거쳐야하는 풀이의 단계가 있습니다.
쉬운 문제는 A-B, 어려운 문제는 A-B-C-D.. 처럼 난이도가 높을수록 그 단계가 복잡하겠죠.
그렇기 때문에 특정 조건을 보면서 마땅히 떠올리고 전개해야 하는 사고과정이 있습니다.
수능수학 수준에서 수험생이 마땅히 해야하는 사고를 ‘필연적 사고’라고 하겠습니다.
Ex) ‘최댓값, 최솟값 조건에 주목하자.’, ‘부등호에서 =이 되는 지점에 주목하자’, ‘원의 중심에서 현으로 수직이등분선을 긋자’, ‘도형에서 평행선이 나오면 동위각, 엇각등을 확인하자’, ‘원에서 원주각과 중심각의 관계를 생각하자’ 등등 엄청 많이 있겠죠.
필연적 사고를 염두하고 공부하는 사람과 문제를 아무 생각 없이 기계적으로 푸는 사람은 큰 차이가 나게 됩니다.
이것들은 이제는 많은 강사들이 강조하고 가르치는 부분입니다.
이 ‘필연적 사고’들을 학습하고 그에 해당하는 문제들을 풀며 체화하는 것이 중요합니다.
처음 공부를 할 때는 이 사고 자체를 어느정도 외우며 공부하는 것도 괜찮습니다.
그러나 강의를 들을때, 해설지를 볼때는 이해되지만 나중에 직접 풀 때는 막히는 경우들이 꽤 있습니다.
이는 강사나 해설은 문제의 인과관계의 모든 부분을 짚어줄 수 없기 때문입니다.
여기에는 직관이 포함되어서일 수도 있고 시간때문에 생략이 될 수도 있겠죠.
그렇기때문에 개인마다 애매하면서 답답한 지점을 경험 해봤을것입니다.
그리고 이 답답한 지점은 자신의 약점부분이기 때문에 넘어가면 이후에도 반복될 확률이 높습니다.
그럼 이 부분은 어떻게 해결해야 할까요?
2) 항상 의문을 가지기
먼저, 문제를 풀 때 어떤 단계에서 자신이 막혔는지를 파악해야합니다.
그리고 단순히 ‘이건 이렇게 해야하는구나’로 끝내면 안됩니다.
‘왜 난 이렇게 못했는지, 또 다음에는 어떻게 해야 할 수 있는지’를 고민해야합니다.
이를 통해 ‘1.필연적사고’를 확장해 개인마다의 빈틈을 채워야합니다.
많은 사람들이 문제를 풀어내는 핵심적인 아이디어에만 집중하는 경향이 있는데
정작 자기가 거기까지 도달하지 못한 이유에 대해서는 생각해보지 않습니다.
그러나 수능시험장에서는 막히는 부분이 생길 때 아무도 도와주지 않고 혼자 돌파해야 합니다.
다소 추상적이기 때문에 예시를 들어보겠습니다.
예시1) 6월모의평가 공통21번
목표: 문제의 해설X (다른 다양한 해설이 있을 수 있음)
1.필연적사고 2.의문 가지기의 예시를 위해서 O
1.부등호에서 =인 지점, 최댓값/최솟값에 주목하자. (필연적 사고)
문제의 (가), (나) 조건에서 매우 특징적인 조건들을 줍니다.
->만약 (나)조건으로 몇 개의 개형들을 소거하지 못했다면?
->’ f(x)=k일 때 원소의 개수’라는 조건 자체를 이해하지 못해서인지 or ‘3개이상’일 때 3개에 주목하지 못하고 머리가 복잡해져서인지 등등 자기가 왜 못했는지를 생각해봅니다.
-> 임의의 k선을 그었을 때 사차함수 그래프의 개형마다 만나는 개수가 다르구나. 이를 통해서 그래프의 개형들을 소거할 수 있구나.
‘부등호에서 =인 지점, 최댓값/최솟값에 주목하자’에서 ‘사차함수에서 =인 지점, 최댓값, 최솟값은 개형을 소거하고 특정해나갈 때 중요하니 주목하자’등으로 확장할 수 있겠죠.
-> ‘다른문제에서는 3이상이 아닌 다른 숫자를 주거나, k의 값이 아닌 x값을 제시할 수도있겠다.’ 그럼 어떻게 해야할지 등의 생각까지 해보면 더 좋겠죠.
2. 개형 특정하기
남은 케이스중에 문제에서 제시된 x=0,1,2에서의 조건을 통해 개형을 특정합니다.
->못했다면? 개형 세가지를 떠올리지 못해서인지/ 떠올렸는데 1,3번을 소거를 못해서인지/ f(0)=0을 활용하지 못해서인지등등.. 어느과정에서 자기가 막혔는지를 생각합니다.
->만약 f(0)=0을 활용하지 못했다면 이유를 생각해보고 제시된 최솟값인 8/3과 비교를 해서 활용하면 편하구나.
->다음에는 제시된 값들을 비교해서 개형을 확정하고 소거할수도 있겠다는 생각을 할 수 있겠죠.
예시2) 5월모의평가 공통21번
1.원의 중심에서 현까지 수직 이등분선을 긋는다. (필연적 사고)
그런데 현AC, CD 두종류가 있는데 현AC에 그어야 하는 이유가 뭐죠?
현AC의 길이가 제시되어있기 때문에 각도 알파에 대한 sin, cos값을 알수 있어서 긋는겁니다.
현CD는 길이가 제시되어있지 않기 때문에 일단 패스합니다.
->현AC에 바로 수직 이등분선을 긋지 못했다면? 의문을 가져 그 이유를 생각해보고
->’길이정보가 있는 현에 수직 이등분선을 먼저 긋자’로 ‘필연적사고’를 확장해보는것이죠.
2.도형에서 평행선이 있을 때 동위각, 엇각을 생각한다. (필연적 사고)
평행인 조건을 이용해 각CED를 알파로 표시합니다.
->못했다면? “평행한 조건을 인지하지 못해서인가? 또는 ‘평행한 조건을 보고도 아무생각이 안 들어서인가?’ 등 의문을 가져봅니다.
->삼각형CED가 외접원의 반지름길이도 제시된 중요한 삼각형이므로
->’중요한 삼각형과 연관된 평행조건이 있으면 동위각, 엇각등을 확인해 각을 표시해본다’ 로 1.필연적사고를 확장해봅니다.
3. ‘외접원의 반지름’을 제시했으므로 사인법칙을 쓸 수 있나 확인한다. (필연적 사고)
삼각형CED에서 외접원의 반지름의 길이, 각CED의 sin값을 이용해 CD의 길이를 구합니다.
->못했다면? 사인법칙의 정의를 잘 몰라서인가? 사인법칙은 알지만 외접원의 반지름을 보고 떠올릴정도로 공부가 덜 되어서인가? 등을 생각합니다.
4. 원의 중심으로부터 수직 이등분선을 긋는다. (필연적 사고)
처음 1번단계에서 CD의 길이를 몰라서 수직이등분선을 긋지 못했던 것을 그어줍니다.
5. 원주각과 중심각의 관계를 이용한다. (필연적 사고)
각COD와 각CAD의 관계를 확인해 각CAD를 각베타로 표시합니다.
못했다면? ‘원주각과 중심각의 관계 자체에 대한 개념이 없었는지?’, ‘알고 있었는데 적용을 못했는지?’ 등 의문을 가져봅니다.
6. CD, AC의 길이, cos베타를 알기 때문에 코사인법칙을 사용한다.
여기까지 예시였습니다.
-> 위 과정에서 얻은 것들을 반복하며 체화한다.
문제를 꼭 다시 풀고 계산할 필요는 없습니다.
시간 날 때 다시 봐주며 내 사고과정들을 체화하고 익숙하게 하는게 중요합니다.
정리를 잘 하시면 정리를 해도 좋고 아니면 모아놓고 보셔도 좋습니다.
저는 따로 정리를 하는것에 피로감을 느끼는 스타일이여서 하진 않았습니다.
대신 개념서 느낌으로 뉴런을 공부했었는데 해당단원에 위의 과정을 거친 문제 페이지를 찢어서 끼워두거나, 아이패드로 찍어놓고 시간날 때 다시 봤습니다.
요약
1 .꼭 해야할 ‘필연적 사고’를 학습하고 문제를 풀며 체화한다. (강의, 문제집 등을 통해)
2. 이때 못 넘어가고 애매한 지점이 생기면 스스로 ‘의문’을 가지고 왜 못했는지를 고민해 써둔다.
이를 해결하며 ‘필연적 사고’를 확장한다.
->위 과정을 반복하며 시간 날 때 보며 체화하고 익숙하고 당연하게 만든다.
묵묵히 공부하면 어느날 수학성적은 갑자기 오르더라구요.
다들 너무 답답해하거나 불안해하지 않고 공부했으면 좋겠습니다!
0 XDK (+3,100)
-
1,100
-
1,000
-
1,000
-
댓글로 이모티콘 다는거 존1나 귀엽다ㅜㅜ
-
언매 1컷 0
언매 공통 -9틀이면 무조건 2라고 봐야 하나요?? 아니면 그래도 1컷에 걸칠까요...
-
분명 국어까진 긴장했고 수학 다 풀고 올해 가겠다라는 느낌이 들었는데 점심시간에 답...
-
만약에 사문하면 6
메가는 윤성훈밖에 없음? 윤성훈 듣기 싫은데
-
뭐하고지낼까
-
다들 어떻게 생각하심
-
입결 제일 낮은과 써도 고대는 어려울까요?
-
국수영지구사문 (언매 미적) 표준점수 예상 131 131 2등급 61 67 원점수...
-
숭실대 낮은과 될까요? 진학사는 간당간당한다고 떠서 ㅠㅠ
-
첫담기념 질받 29
반가워요 선넘도괜찮으니 질문해주세요
-
이러면 2컷 80밑은 확정인듯
-
육군 군수 2
12월 9일 입대 입대전 지2 개념한바뀌 할말? 사실 근데 군수할지말지도 확정 못 하긴 함..
-
ㅇㅈ 5
ㅂㄱㄸㅂㄱ
-
올오카 8권 매월승리 1-3호 빌런즈 선택(화법과작문)인데 살사람 있으시면 쪽지 오세용
-
일어나자마자 6
펑펑
-
의치한약수/설높공~낮인문까지 서로 섞여서 잘 모르겠음
-
ㅈㄱㄴ 평가원 중에도 선별한 건지 모두 넣은 건지 궁금해요
-
ㅇㅣ제 오르비만 할게요
-
올해는 수능 기준 3합5에 80퍼 3합 4에 100퍼 준 거 같던데
-
2020년이 엊그제 같다 코로나가 엊그제 같다 03년생들 22수능보러갈때 중학교...
-
아 ㅅㅂ 나 뭐했냐
-
125명 중에 3등떠서 안정 나오는디 방심 ㄴ?
-
ㄹㅇ ㅇㅈ 11
ㄹㅇ 올해 초에 난 내가 20살을 이렇게 보낼 줄 몰랐지
-
왜 오르비하노 ㄹㅇ
-
아 손목아파 4
얼불춤을 너무 열심히 했나
-
공통만 틀 원점수 80보다 공통 안 틀린 80미만 원점수가 표점 높게 나올 수도 있나요
-
쿠쿠웅
-
김범준T 인강 1
수1, 수2는 차영진T 십일워로 한바퀴 돌렸고 십일워크북이랑 쎈B 정도 풀었으면...
-
붙으면 장땡아녀?
-
07임 뭔가역전된느낌임... 07이05한테...
-
종합 두개나 떨어지니까 남은 4개도 불안해지네ㅆ,,,, 희망은 고대 뿐. 붙여줘 제발
-
수능일기준 50일전 즉 9월25일로 돌아간다치면 그때 수능까지 시간이 짧았었던 것...
-
제곧내 아는사람 제발 댓글좀 써줘요 ㅠㅠ
-
과탐만 잘봤어도 ㅎ
-
메디컬은 가야되서 과탐은 해야되는데 진짜 뭐하죠 물리는 아예안해서 째끼고 화1...
-
이땐 참 어렷구나
-
ㄹㅇ임?
-
ㅇㅈ 10
어딘지 맞추긴 쉬울거에요 수능 사흘전 어디선가 찍은 사진
-
할 수 있는 활동은 다 해야 하고 학급임원에 발표에 쌤 이거 생기부써주실수있나요에...
-
에반데 진짜 사문 정법 해야하나
-
아까처음담배펴봤는데 22
아직도폐가시린느낌이야...
-
아닌가 사탐고르고 국수 펌핑시켜서 한약수 노려볼만하지않나
-
경영이 목표인데 그건 어려울거같고 경제도 잘 모르겠고 사회학과가서 복전이나 전과하려는데 가능?
-
일본어 잘 아는 편은 아니긴 한데 솔직히 개인적으로 한국노래 보다 좋다고 생각함
-
현역 때 정시 시작하면 삼수로 대학 간다
-
타로점 봐드립니다(2) 82
말 그대로 타로점 봐드려요. 가벼운 주제는 보고싶은 주제+1~78 중 숫자 3개...
-
기말이 12.5에 끝납니다. 12.10쯤부터해서 3월전까지 정시 베이스깔 생각입니다...
불연속지점 ㄷㄷ
저도 갑자기 확 오른거보면 맞는듯
어느순간 확 오를거에요 !
논리적인 사고과정 정리하고 다음에 이렇게 생각하려면 어떻게 행동해야 하는지 고민하기
저도 작수 4에서 6평 99로 올렸는데
생각해 보면 2등급 아래로는 문제풀이량이 절대적으로 부족한 듯
진짜 와닿는 글...
수학뿐만 아니라
국영탐도 해당이라 보는데 비동의 하시나요?
동의합니다
좋은글 감사합니다 평소에 저런식으로 기출이랑 N제 공부하는데 성적 꼭 많이 올랐으면 좋겠네요
오르실거에요!
보통 어떤 등급에서부터 막힌다고 생각하시나요? 3등급?
와 감사합니다..!!
진짜 확오르는거는 맞는 듯
제가 9모 때까지 3등급이었다가 수능 때 1등급초 찍음
한달 지나고 보니
위 칼럼처럼 벽이 하나씩 부숴지는 중입니다
수학맛있네요
ㄹㅇ 수학은 뭔가 문제 푸는 알고리즘만 깨우치고 그거 적용해서 문제 벅벅 풀다보면 금방 오르는듯
저도 두달만에 2에서 90점대로 올림
감사합니다
1컷인데 갑자기 만점나오는 그날이 오면 좋겠어요..
칼럼 주제에 대해서 궁금한 점 쪽지드려도 될까요??
네~
와 아이민
결국 성적 확 오르는걸 경험하셧다는게 너무 부럽습니다..
고1때부터 반수하는 지금까지 등급이나 성적변동이 거의 없었는데 좋게 말해야 유지지 계속 똑같은 상태이니 이게 맞나 혹은 해도 성적이 오를까 하는 회의감이 자꾸 드네요ㅜㅜ 한번 이 방식 써서 계속해서 수학공부 해보겠습니다..!
대단하십니다