[이동훈t] 영원히 반복되는 구조+실전개념 (2106가18(나21))
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
수능 시험에서
영원히 반복되는 문항 구조,
과목은 다르지만
공통적으로 평가되는
실전개념에 대해서
알아보겠습니다.
전체를 모두 살펴보는 것은
한 개의 칼럼 글에서는 힘들겠고요.
(좀 더 많은 구조 연구+실전개념은
2025 이동훈 기출문제집에 수록된
실전 개념 설명 파트를
참고하시면 됩니다.)
21학년도 6월 모평 가형18 (나형21)
수학1 ㄱ, ㄴ, ㄷ 문제에서 평가된
문항구조+실전개념이
수학2, 미적분에서도
동일한 맥락에서 평가되고 있음을
함께 살펴보겠습니다.
본론 들어가실께요 ~!
힐 위 고 ~!
이 문제를 모두 읽고,
두 곡선을 그리고 나서
아래의 생각들이 바로 들어야 합니다.
(1) 문제에서 주어진 두 곡선을 그리자.
(2) 두 곡선의 두 교점의 x좌표가 모두 -1, 1 사이에 있고,
이차함수 y=-2x^2+2 의 꼭짓점이 (0, 2) 이므로
두 곡선을 바둑판(격자) 위에 그려야 한다.
(이때, 격자를 그리지 않으면 ㄴ을 기하적으로
해석하기 어려울 수 있음)
(3) ㄱ. 사이값 정리
ㄴ. 기울기의 대소 비교 (& 기울기 1)
ㄷ. x1, x2 의 범위 & 2^x = -2x^2 = y 이용
위의 ㄱ, ㄴ, ㄷ에 대한 생각은
사실 그림을 그리지 않았어도
머릿속에 떠올라야 합니다.
어차피 평가하는 것이 정해져 있고,
이는 매우 전형적이기 때문이지요.
요컨대 ...
곡선 2개 -> 교점 -> 경계값(ㄱ), 기울기(ㄴ), 방정식연립(ㄷ)
이게 전광석화 같이
머리를 스치지 않으면
어찌 시험장에서 안정적인 만점을 받으리오 !
참고로
위의 설명은
2025 이동훈 기출문제집의
후반부에 수록된 실전개념에서
모두 다루고 있습니다.
그리고
위에서도 잠깐 언급하였지만 ...
ㄴ에서
y2-y1 < x2-x1
(필충)
(y2-y1) / (x2-x1) < 1
(필충)
두 점 (x1, y1), (x2, y2) 를 잇는 직선의 기울기 < 1(=직선의 기울기)
기울기가 1인 직선을 찾는다.
즉, 연결하면 기울기가 1이 되는 두 점을 찾는다.
는 격자를 그리지 않으면 잘 보이지 않습니다.
특히 3등급 상단~2등급 하단에서
좀 처럼 등급 안오르는 분들은 ...
점 찍어서 그래프 그리는 연습이
많이 부족한 경우가 많습니다.
이거 고치면
최소 3점에서 최대 6~8점까지
오르는 경우가 많으니 ...
그래프를 꼼꼼하게 그리는 연습을
좀 더 하셔야 하고요.
아래는 2025 이동훈 기출의 해설 입니다.
깔끔하죠 ?
ㄱ.
아래는
2025 이동훈 기출 수학1 평가원 편에
수록된 교점 처리에 대한
이론 설명입니다.
자 이제 사이값 정리가 적용된
미적분 문제를 하나 살펴보겠습니다.
10년 전 문제인데요 ...
이 주제에 대한 고전 이라고 봐야겠죠.
ㄱ, ㄴ, ㄷ의 문제 구조에 대해서도
두 개의 곡선 -> 교점(ㄱ)+방정식연립(ㄱ) -> 사이값 정리(ㄴ)
구조가 9년 사이에 바뀌었나요 ?
(순서 정도는 바뀔 수는 있어도 ...)
똑같죠 !
수능은 ...
그냥 never ending, same story 거든.
나 같은 (연습을 많이 한) 사람은
함수 준 것, 문제 구조 보면
딱 보이거든.
어떻게 풀어야 하는지가.
여러분도 이렇게 하셔야 하겠고요 ...
이런 구조에 대한 이해가 없이는
수학을 잘 할 수는 있어도
수능 시험에서 고득점/만점 받는 건 쉽지 않은 일이죠.
그리고 평가원 기출은
(교사경 기출 포함해서...)
반드시 31 년 전체를 풀어 주어야 합니다.
최근 몇 년 간 ...
이렇게 하시면 수능 날 곤란할 수도 있으니.
아래는 맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄴ에 대한 해설 입니다.
(수식을 이용한 해설 또한
2025 이동훈 기출에 수록되어 있습니다.)
수식 보다는
역시 기하적인 관점이
좀 더 출제 의도에 가깝다는
생각이 지금도 듭니다.
ㄴ.
아래는 2025 이동훈 기출 수학1에 수록된
볼록성+직선의 기울기에 대한
실전 개념입니다.
이 주제는 미적분에서
도함수/이계도함수의 관점에서
다시 다룹니다.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
보기 ㄴ에 대응되는 미적분 문제입니다.
차이점 이라면
볼록성+직선의 기울기 에
평균값 정리가 결합된 것 인데요.
이에 대해서는
2025 이동훈 기출 미적분에서
아주 자세하게 다룹니다.
아래는 위의 ㄷ에 대한 해설.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대한 해설입니다.
ㄷ.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대응되는,
이차함수의 대칭성을
이용해야 하는 문제 입니다.
대칭축에 대하여 두 점이 서로 대칭이다.
이 주제에 대한 문제는 워낙 많은데요.
그 중에서도 가장 이 주제가 잘 드러난 문제이고 ...
두 점을 서로 대칭이동시켜보는 연습이
얼마나 중요한지를 알 수 있습니다.
사실 좀 더 깊게 들어가면
곡선 위의 점의 이동 (평행, 대칭)까지
생각해주어야 하기도 합니다.
아래는 위의 문제에 대한 해설.
오늘 다룬 주제들은 ...
2025 수능에서 반드시 나옵니다.
라고 말한다면
굉장히 높은 확률로 맞을 것입니다.
이 주제들을 꼭 익혀두시고 ...
다른 주제들도 완전 정복 하시길 바랍니다.
다음 주에도 또 만나요 ~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄱㄴ...... 내가 이걸 새벽 오르비에 왜 물어보고 있나 싶다만
-
잘생긴오빠들 사진좀 10
ㄱㄱ
-
맞팔 구함요 2
네
-
만표 58+2,3등급 블랭크...
-
진짜 주에 한번씩오는구나
-
질문받음 2
-
그거 난데 계획이 두리뭉실해서 그냥 본능적으로 해야할 것 같은 걸 함 그래서 한계에 부딪혔나
-
나이드니까 좀 6
사람이 좀 순해지고...잔인한거 자극적인거 말고 마음이 평온해지는 그런거를 찾게 됨...
-
음음
-
맞팔구 2
잘 안하려햇는데, 굳이 안할 이유가 없어보임뇨이제 밤마다 올릴꺼니까 그런줄 아삼
-
"170만 넘으면 돼 진짜로" ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
25 24 화작 3
25 24 화작 부분 다른 연도보다 어려운 편인가요?? 풀어보니까 시간이 훨씬 많이 걸려서
-
ㅇㅈ 3
없는데.
-
키작은 여자들도 2
주변 여사친들 중 키 150대 여자들도 남자 169 거들떠도 안보던데...
-
오랜만에 새르비하는데 도파민 좀 얻어가자
-
지금은따로모안하죠,? 실모시즌에만좀풀가
-
ㅇㅈ 9
1분삭예정
-
나랑 맞팔해줄 오뿡이 구함
-
의대증원 0
의대증원으로 설대추합이 많이 돌거라는데 맞음? 두세명은 돌라나?
-
고2 학생 과외중인데 쏀 끝내고 기출 들어가려는데 자이스토리 고2꺼를 할지 고3꺼를...
-
키 엄청 큰 남자랑 사귐 고목나무에 붙은 매미 조합... 키 어느 정도 되는...
-
무슨 이미지임?
-
질문받습니다 12
제빵대 재학 기하 베이비 밥먹어야됨 T1벤치 질문 받습니다
-
보통 매개변수함수라함은 X=f(t) Y=g(t) 로 x와y는 t에의해 계속 변화하는...
-
인증이나 해볼까 6
-
ㅋㅋ 애송이네요 하하
-
건축공학과 0
이번에 건축공학과 진학하면 노트북을 사려는데 맥이랑 윈도우 중에 어떤 컴이 더...
-
1차 넉넉하게 붙었는데 한국사 4 이하면 탈락인지 모르고 한국사 1도 안 보고...
-
여자 키 젤 많이 본거 11
157 162 165 뭔가 얘네 셋이 많던데
-
야식메뉴추천좀 5
지금 뭐 먹으면 안되는 건 아는데 입이 심심함
-
맞팔구해요 。◕‿◕。
-
머리는 더이상복잡한사고가불가능하고몸은떨리면서 긴 풀이와지우개가루를 보면서 느끼는...
-
1. 나의 위치 2. 점수분포 에서 다른 분들은 쭉 아래까지 내리면 3. 과거 점공...
-
근데 5
드레이븐이
-
여사친이 이런말 하는데 무슨 대답을 해줘야할지
-
제 키는 183임뇨 10
"자신감 10cm"
-
밥이나 먹자 4
안먹ㅇ을건데
-
오르비시작했으면 0
민트테 한 번은 달아봐야지
-
간아 버텨다오 2
이번 달만 달릴게 민짜 탈출했잖아
-
오늘은 날이 아니네
-
션티 프리퀀시 0
작년 단어장 봐도 상관없으려나요
-
팔로우많으면 뭐가 좋음
-
평가원 추천 좀 9
과한거 말고하나 짐 해서 올림 잠 안 옴
-
소주로 머리아픈거면 막걸리 막걸리로 아픈거면 맥주 맥주로 아픈거면 소주
-
갑자기 빡치는군 2
에휴이
-
또 키메타야 12
오늘도 싹다 기만자들인 170 이상을 저격할때가 되었군요
-
여자고 174인데 이정도면 10퍼안에드나
감사합니다 도움많이됏급니다