[이동훈t] 기출 1회독 이후가 더 중요 (+실전개념목차PDF)
2025_이동훈기출_실전개념목차.pdf
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
벌써 2월 중반이 넘어가네요 ...
세월 참 ... 빠르고 ...
규칙적인 생활을 하고 계실 것으로 믿습니다 !
2025 수능 대비를 빠르게 시작하신 분들은
이미 평가원 기출을 거의 다 풀어가실 것 같은데요 ...
평가원 기출은
다음과 같이 3회독 할 것을 권합니다.
각 단계에서 달성해야 할 목표까지 써보면
1회독 : (어떻게 든) 답은 모두 맞히기
2회독 : 실전 개념을 정리한 후, 문제를 정확히 이해하기
3회독 : 문제 사이의 관계까지 이해하기,
다양한 풀이를 찾아보고, 그 중에서 최선의 풀이를 결정하기
2025 이동훈 기출이 기출은
3회독에 최적화된 책인데요.
2025 이동훈 기출 평가원 편 (또는 평+교 편)에는
실전 개념이 포함되어 있습니다.
(그래서 별도의 수능 개념서 필요하지 않으시고요.)
실전 개념 목차는
이 글에 PDF 파일로 첨부하였으니
다운 받으시고요.
(일전에 올려드린 파일과 동일합니다.)
또한 평가원 기출의 경우에는
최대한 많은 풀이를 수록하기 위하여 노력했습니다.
( [풀이1] 또는 시험장 풀이 표시가 된 풀이만 읽으시면
그 어떤 기출문제집 보다 빠르게 주요 풀이 완독 가능 하시고요.)
평가원 기출 1회독 이후에
실전 개념으로 각 문제가 가지고 있는
이론적인 배경까지 정리한다면
안정적인 1등급 / 만점을
매우 높은 확률로 달성할 것입니다.
이건 뭐 ...
내가 최근 5년 간 가르친 학생들로
이미 임상 실험을 마쳤고.
특히 낮은 2등급 분들은 ...
평가원 기출 1회독 + 실전 개념 정리
딱 요걸
제대로 하시면
안정적으로 1등급에 안착하시게 됩니다.
(낮은 2등급은 N제, 실모, ... 등등을
더 푸는 것보다 ...
평가원 기출 1회독 제대로 한 번 더 하시는게
성적 향상될 확률이 높아집니다.
이건 내가 선생으로 가르쳐 봐서
더 잘 아는 거고 ...)
이때,
제대로
=
평가원 기출 전개년
+ 맑은 정신으로 하루에 최소 3~4시간 이상
+ 실전 개념으로 이론 까지 정리
(미적분 선택 기준으로 3 개월 내외 생각하시고 ...
그런데 난 1달 만에 다 하겠다 ...
이러면 날림 공사 됩니다.
그럼 나중에 또 해야 하는데 ...
그럼 또 귀찮고 ... 하기 싫고 ...
이렇게 되죠.)
특히 1등급 이상 원하시는 분들의 경우 ...
평가원 기출은
최근 기출, 고대 기출 모두 풀어야 합니다.
출제자 분들이
이 둘의 밸런스를 맞춰서 출제 하니까요.
자 이제 ...
각 과목의 실전 개념을
기출 문제와 함께 확인해보실까요 ?
수학1 - 등호가 2개 들어간 식 (가비의 리)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전 개념의 구성은 다음과 같습니다.
등호가 2개 들어간 등식을 처리하는 일반적인 설명,
간단한 예제,
심층 주제인 가비의 리
이 주제는 더 이상 정리할 것이 없을 정도로
자세하고, 체계적으로 설명해두었습니다.
수학2 - 삼차함수의 그래프 (변곡접선)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
수학2에서는 변곡점, 오목볼록을 배우지 않지만
기출문제를 보면 이에 대한 이해가 필요한 경우가 있으므로
수학2에서도 변곡점, 오목볼록, 변곡접선에 대한
설명을 해두었습니다.
위의 예제는 산술적인 풀이, 기하적인 풀이가 모두 중요하므로
이 두 방법을 모두 소개하였습니다.
특히 산술적인 풀이는 삼차방정식
(x-alpha)*(ax^2+bx+c)=0
에 대한 일반적인 해법을 적용해야 하고 ...
이 계산법은 수능에서 종종 출제되고 있으므로
반드시 익혀 두어야 합니다.
미적분 - 초월함수의 미분성 (합성함수)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전개념 구성을 보면.
합성함수 f(g(x)) 의 미분가능성에 대한 일반적인 설명,
간단한 예,
좀 더 복잡한 예
(산술적인 풀이와 기하적인 해석)
꼭 정리해야 하는 점들을
가능한 모두 다루었습니다.
확통 - 포함과 배제의 원리
이 주제에 해당하는 기출 입니다. (& 풀이)
이 주제에 해당하는 실전 이론 입니다.
포함과 배제의 원리는
경우의 수와 확률에서 종종 출제되는 개념 입니다.
교과서에서는 직접적으로 설명되어 있지 않으므로
실전 개념을 통해서 추가적으로 학습해야 합니다.
기하 - 벡터의 덧셈과 뺄셈 + 내분외분
이 주제에 해당하는 기출 입니다. (&풀이)
이 주제에 해당하는 실전 이론 입니다.
시점이 일치하지 않는 두 벡터의 합 (내분외분)을
어떻게 처리해야 할 지에 대한 설명 입니다.
이 설명은 교과서에서 다루지 않지만
기출 문제를 풀 때 유용한 경우가 많으므로
꼭 익혀두어야 할 것입니다.
그 외에도 5과목 모두 반드시 익혀야 하는
실전 개념을 모두 수록하기 위하여
노력하였습니다 !
2025 이동훈 기출과 함께
올해 승리하시길 바랍니다 ~~!!!
ㅎㅍ ~
2025 이동훈 기출 사용법 (+실물사진)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 2025 이동훈 기출 실전 개념 목차
고1 평가원 기출문제집
[이동훈t] 2025 이동훈 기출 고1 수학 PDF 무료 배포
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
남여 9:1정도 되는듯 ㅇㅇ
-
수준높은 질문만받아요 11
ㄱㄱ
-
저는그런거무서워서못하겠던데
-
ㅇㅈ 6
종건 ㅇㅈ.
-
여캐일러 투척 2
.
-
옛날엔 절대 하면 안되는 과목이었는데 요새는 어때요..?
-
정상이었나 보네요 올해는 멘탈 관리 잘 해봐야될듯
-
Zzzz 14
-
국어때문에...
-
고2 모의고사 3등급정도 뜨는데 그냥 기출푸는게낫나요?
-
나도무물보하고싶지만 11
어차피 나 아는사람도 별로 없을거같아서 안할거임…
-
이건 진짜라는거임
-
댓글로 이모티콘 다는거 존1나 귀엽다ㅜㅜ
-
언매 1컷 0
언매 공통 -9틀이면 무조건 2라고 봐야 하나요?? 아니면 그래도 1컷에 걸칠까요...
-
분명 국어까진 긴장했고 수학 다 풀고 올해 가겠다라는 느낌이 들었는데 점심시간에 답...
-
만약에 사문하면 6
메가는 윤성훈밖에 없음? 윤성훈 듣기 싫은데
-
뭐하고지낼까
-
다들 어떻게 생각하심
-
입결 제일 낮은과 써도 고대는 어려울까요?
-
국수영지구사문 (언매 미적) 표준점수 예상 131 131 2등급 61 67 원점수...
-
숭실대 낮은과 될까요? 진학사는 간당간당한다고 떠서 ㅠㅠ
-
첫담기념 질받 29
반가워요 선넘도괜찮으니 질문해주세요
-
이러면 2컷 80밑은 확정인듯
-
육군 군수 2
12월 9일 입대 입대전 지2 개념한바뀌 할말? 사실 근데 군수할지말지도 확정 못 하긴 함..
-
ㅇㅈ 5
ㅂㄱㄸㅂㄱ
-
올오카 8권 매월승리 1-3호 빌런즈 선택(화법과작문)인데 살사람 있으시면 쪽지 오세용
-
일어나자마자 6
펑펑
-
의치한약수/설높공~낮인문까지 서로 섞여서 잘 모르겠음
-
ㅈㄱㄴ 평가원 중에도 선별한 건지 모두 넣은 건지 궁금해요
-
ㅇㅣ제 오르비만 할게요
-
올해는 수능 기준 3합5에 80퍼 3합 4에 100퍼 준 거 같던데
-
2020년이 엊그제 같다 코로나가 엊그제 같다 03년생들 22수능보러갈때 중학교...
-
아 ㅅㅂ 나 뭐했냐
-
125명 중에 3등떠서 안정 나오는디 방심 ㄴ?
-
ㄹㅇ ㅇㅈ 11
ㄹㅇ 올해 초에 난 내가 20살을 이렇게 보낼 줄 몰랐지
-
왜 오르비하노 ㄹㅇ
-
아 손목아파 4
얼불춤을 너무 열심히 했나
-
공통만 틀 원점수 80보다 공통 안 틀린 80미만 원점수가 표점 높게 나올 수도 있나요
-
쿠쿠웅
-
김범준T 인강 1
수1, 수2는 차영진T 십일워로 한바퀴 돌렸고 십일워크북이랑 쎈B 정도 풀었으면...
-
붙으면 장땡아녀?
-
07임 뭔가역전된느낌임... 07이05한테...
-
종합 두개나 떨어지니까 남은 4개도 불안해지네ㅆ,,,, 희망은 고대 뿐. 붙여줘 제발
-
수능일기준 50일전 즉 9월25일로 돌아간다치면 그때 수능까지 시간이 짧았었던 것...
-
제곧내 아는사람 제발 댓글좀 써줘요 ㅠㅠ
-
과탐만 잘봤어도 ㅎ
-
메디컬은 가야되서 과탐은 해야되는데 진짜 뭐하죠 물리는 아예안해서 째끼고 화1...
잘쓸께요 흐흐哈哈?哈哈?