[칼럼]논술에서도 쓸일 없는 테일러 급수 증명법 (ver.고등학생)
첫 글 쓴지 얼마 안되서 두번째 글을 써보네요... 그리고 이륙 지원해주신 분들 모두 감사합니다!
제목대로 테일러 급수는 사실 논술에서도 써먹을 기회 자체를 거의 주지 않습니다... 하지만 난 극한 문제를 풀 때 테일러 급수 매번 쓰면서 너무 찝찝했다! 하시는 분들은 한번쯤 읽어 보시면 좋을 것 같습니다.
테일러 급수란 초월함수를 다항함수의 합으로 나타내는 방법입니다. 예를 들자면
과 같은 식의 방정식입니다. 이를 전개하면
과 같은 모양이죠. 여기서 우리가 주로 쓰는 부분은 이차항 이상의 부분을 싹 다 잘라내고
로 근사한 부분입니다. x가 0에 가까워질수록 1차항보단 2차항 이상의 부분의 오차가 매우매우매우 작아지기 때문에 이렇게 근사할 수 있는 것입니다.
그럼 지금부터 테일러 급수의 증명을 간단하게 적어 볼게요.
급수로 구하고자 하는 함수를 f라 둘게요. 고등학교 과정에서 배우는 모든 초월함수는 무한히 미분 가능하니 f도 무한히 미분 가능하다고 두죠. 그러면 미적분의 기본정리에 의해
가 성립합니다.
위 식을 부분적분하는데 u=f'(t), v'=1로 두고 적분상수 C=-x로 두면 다음과 같은 전개가 가능해집니다.
v'=1이면 v를 적분하면 t+C가 나오죠. 여기서 적분할 인자는 t이기 때문에 적분상수를 x로 둘 수 있게 됩니다.
자. 이번엔 오른쪽의 (t-x)f''(t)를 다시 부분적분해 보겠습니다.
여기서 f 위의 괄호 안의 숫자는 f를 미분한 횟수를 표현하는 방법 중 하나입니다. '(dot)을 많이 찍다 보면 갯수 세기가 불편하잖아요?
한번 더 전개하면
이를 계속 반복하다 보면 이러한 규칙이 생깁니다.
이렇게 다 더하면
라는 식이 나옵니다.
함수 f는 무한히 미분이 가능한 함수라 가정했고 대부분의 초월함수가 실제로 그 조건을 만족하므로 n은 무한히 커질 수 있겠죠?
이때 어지간한 초월함수라면 n!의 증가량이 분자 부분((t-x)^n f^(n)(t))의 증가량보다 아득히 크기 때문에 마지막 적분 기호는 n이 무한대로 발산한다면 0으로 수렴합니다.
(이 부분은 대학 가서 적분의 평균값 정리를 배워야 자세히 설명이 가능한데... 일단은 이렇게 대충 짚고 넘어갑시다)
따라서 f(x)는 다음과 같이 새롭게 정의할 수 있습니다.
이것이 그 탈 많은 테일러 급수의 유도 과정입니다.
그럼 이제 실제로 자주 쓰는 초월함수 몇 개를 넣어서 한번 계산해 보죠.
먼저 f(x)=e^x입니다.
f'(x)=e^x, f''(x)=e^x, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
이번엔 로그함수 f(x) = ln(1+x)입니다.
f'(x) = 1/(1+x), f''(x) = - 1/(1+x)^2, f'''(x) = 2/(1+x)^3, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
다음은 사인함수, 코사인함수를 해 볼까요?
이번에도 a=0을 대입하고 미분해서 계산해 보면
나머지 삼각함수들은 사인, 코사인처럼 직접 유도되는 것이 아니라 다른 방법으로 유도합니다. 그래서 그 과정 설명은 못 해드리고... 가장 자주 쓰이는 탄젠트의 식만 짧게 보여드리겠습니다.
네... 이 친구의 계수는 얼핏 보면 불규칙해 보입니다. 이는 나중에 베르누이 수열이라는 걸 배운 뒤에 알아보시는 걸로...
다른 초월함수들은 고등학교 과정에선 거의 안 배우죠? 그러니 초월함수 탐색은 여기까지 하겠습니다. 수식 넣기 힘들어요
마지막으로 테일러 급수는 대체 어디까지 근사해서 써야 하느냐! 에 관한 내용을 조금이나마 적겠습니다.
대부분의 극한 문제에서는 분모 분자가 같은 차수가 되도록 문제를 만듭니다. 이러한 경우에는 보통 1차항(코사인의 경우는 2차항)까지만 근사하면 답이 나옵니다.
하지만 간혹가다 분자에는 사인 1개 x 1개나 탄젠트 1개 x 1개 줘 놓고는 분모에선 3차항을 준다던가... 하는 경우가 있습니다.
뭐 이런식으로 말이죠. 이때는 분모와 차수가 같아지는 차수까지 근사를 해 주셔야 합니다. 가령 위의 식에서는 사인을 3차까지 근사해서 답은 1/6이 나옵니다.
여기까지 테일러 급수의 증명과 활용시 주의점에 대해 부족하게나마 적어 봤습니다. 이걸 보고 수학에 흥미가 생기신다면 좋겠네요... 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
종료 10분전에 꽉꽉 채우고 10분동안 검토하더라 대단하네
-
시험이 실제로는 어려웠어도 다들 할만했다, 대충 1개빼고 다 풀었다, 무난했다 이런...
-
귀여워 5
-
수능 등급컷 탐구가 메가에서보다 한등급씩 올랏는데 뭐가 정확한겨? ㅠ 백분위도 10퍼나 차이나..
-
나란 미친새끼
-
언제 뜰지 아시는 분 있으신가요 찾아봐도 안나오네요 인강 듣고 싶은게 있는데
-
볼펜으로 쓰라는 게 존나 에바임 문제3쓰는데다가 문제2풀고 ㅋㅋㅋㅋㅋ
-
너무 자세하게 쓰나..
-
지문 읽다보니까 '아 일본 얃옹들 중에 모자이크 삭제라고 하는것들이 이건갑네 ai로...
-
여기서 미분계수 정의 사용하면 f=2x로 나오는 것 같은데 이렇게는 못 푸나요?...
-
논술 잘하는사람들은 13
수능수학은 그냥 100받음? 아무리봐도 수능수학보다 논술이 훨씬 어려운것같은데
-
폐에 문제 있나 싶어서 사진도 찍었는데 문제 없다함 진짜 ㅁㅈㄷㄴ 단순히 건조해서 그런건가.....
-
얼버기 9
-
아무 의미 없는건가요?? 8ㅁ8...
-
ㅈㄱㄴ 올해 기하 어땠나요
-
잘가라 중앙 가천 11
인하대만 남았다..
-
FAQ. 의대생들은 의사 망했다면서 왜 의대 자퇴 안 함? 10
1. 이미 학년이 차서 시간 매몰비용이 크거나 (이게 대부분임) 2. 수능 볼...
-
진짜 챔피언 삭제좀
-
국어 인강을 들어본적은 없지만 (해설강의를 듣거나 이감같은건 풀긴 함) 항상 국어는...
-
논술말고 1
내년 수능준비하자~~
-
아직도너를 그렇게몰라
-
논술로 엄대엄 붙으니 걍 깨달아버림
-
하지만 성과가 나오지 않는다면 긍정적으로 살기 힘든 것 같아
-
가천의 7번 7
a값 별 듣도보도못한 숫자나오길래 닷지쳤는데 수능수학으론 도저히 대비가안되네 ㅋㅋㅋ
-
논술메타인가요 0
다들 합격기원
-
학원한번가고나니까 이것도재능의영역같음 범부는정시로가자
-
가천의 후기 11
일단 1번에 p,q 각각 108/11, 48/11 2번이였나 극한문제 그게...
-
고생했다 1
나자신 눈물겹다
-
정시로 메디컬 노리는데.. 수시도 쓰긴할거같아요… 근데 수시가 과탐 1과목은 꼭...
-
가천의논<< 4
리듬농구 최지욱 선생님이면 만점 가능할까 아마 분명 가능하실듯
-
악몽꿈 10
대충 머리가 두개 달렸고 하나는 맹꽁이, 하나는 금붕어인 핑크 괴물(몸은...
-
넌 어디까지 가길 원해~
-
집 보내줘 2
졸려요 엉엉
-
교수님들아 5
최소한 숫자정도는 좀 깔끔히 맞추는 성의를..
-
역시 폼 안 죽었구나
-
원서비는 냈으니까 문제지라도 보고 올까 말까 고민입니다 시간이 좀 아깝기도 하고..
-
예뻤어를 들을 때마다 떠오른다
-
다들 논술 얘기 열심히 하는중이라 뻘글 쓰기 무섭네 8
라면서 뻘글 쓰기
-
한 세문제 풀었나. 이제 의대 입시 쳐다도 안볼듯. 준비 안한 것도 있긴 했는데....
-
상방 의사보다 훨 높다 떼돈 벌자 가서
-
13일 12시 땡 하면 발표하는 건 아닐거 같은데
-
국어 노베 3
예비 고3 고1,2 모의고사 쭉 4등급입니다…. 인강 강사 추천해주세요
-
안봐서 모름뇨이...
-
의대 들어와도 의사 되려면 최소 6년 보통 11년 더 박아야 되고 그동안은...
-
중대 보시는분들 0
오늘 학교에 사람 많아요? 재학생 출입 가능한가
-
화장실 롯데타워뷰는 좋긴하더라 걍 전국서바 29번 30번 모음인데
-
가천대 의논 3
중앙의 다 풀었는데 여긴 그냥 웃음만 나오는 난이도네 ㅋㅋㅋㅋ 5.5~6문제 정확히...
-
이런 ㅅ발ㅋㅋ 2
가천의 논술붙기 vs 가천의 정시로뚫기 난 전자가 더 어렵다고본다 물론 둘다 실패함 ㅅㅂㅋㅋㅋ
-
급함 ㅜㅠㅠ하 어떡하지 유효기간은 지남 ㅠㅠ 졸업해서
테일러씨는 참 똑똑하구나
한무 부분적분으로 테일러급수 느낌있게 증명하기 ㄷㄷ
멋있네요
전 개인적으론 이것보단 미분을 이용한 증명이 더 멋진데... 엡실론 델타를 여기서 설명할 수는 없으니 ㅠ
이것도 올려주신다면 재밌게 읽어보겠습니다 ㅎㅎ,,
이건 차마 설명을 못하겠네요... 너무 풀어쓰기가 힘들어유...
예전에 저걸 통해서 오일러 등식 도출할때 참 수학 재미있다고 생각했었는데...
좋은글 감사합니다