Farewell[1] : 초전도치
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어디가 더 낫다고 생각하시나요?? 집은 경남권입니다.
-
대충 어디 라인까지 될까요? 문과 교차지원 생각도 있음ㅠ
-
원자력공학 우리나라가 기술력이 없느냐? No 앞으로 전망이 나쁘냐? No 얼마전...
-
계약학과 아닐경우면..
-
화미생지 0
백분위 90 94 3 99 89 인데 서성한 교차로도 힘들까요? ㅜ 고트 님들의 조언 부탁드립니다아
-
화작미적쌍윤렛츠기릿ㅋㅋ
-
ㅈㄱㄴ
-
정석민 0
정석민 들으시는 분들 중에 인강생 기준으로 주간지 뭐하나요??
-
대성만 살까? 0
내일까지는 결정해야하는데 솔직히 지금 메가에서 물리 빼곤 딱히 끌리진 않는데 걍 대성만 ㄱ?
-
국어 질문이요 0
정석민쌤 현강 신청해뒀는데 듣기론 주간정석민이 없어졌다 하던데 그럼 현강에선...
-
산책이즐거워요
-
시대 등급컷 2
시대 등급컷 어디서 볼 수 있나용??
-
선착순 15명 덕코 17
주세요
-
12월 입대예정인데 고민도 많이되고 상담해주실 분들 구합니다..
-
뉴스타트 메가패스 언제까지 하는거예요? 12월 2일까지 한다고 하는데 10만원...
-
98점이면 안되겠죠? 2월에 그래도 봉사랑 이것저것다해서 이렇게 나오던데 안되면 육군가고
-
강남학사 0
비용이 어느정도인가요?
-
지금 6명이랑 5병째 아직 괜탆아 섻
-
아임 송하빵 0
-
야자도 안하는데 이시간에 학교를..
-
산책나왔어요 14
눈도보는김에 너무예뻐요
-
인공지능에게 정복된 지 오래인 게임을 인공지능을 이용해 오히려 더 발전시키고 요즘...
-
옛날엔 유튜브만 보고도 재밌게 있었는데 이제 뭔가 다 재미가 없음
-
뭐지다노
-
재수,삼수때 미적 하고 28,29,30틀 거의 항상했었고, 확통은 현역때 하고...
-
희망과는 경영, 경제, 정치외교, 행정 정도입니다. 내신은 2점대 초반인데 교과우수도 될까요?
-
지구 1컷 0
42 아니었냐고 하.. 부산시교육청 믿습니다
-
탑의 랩 없으니 뭔가 허전 패배는 있으나마나 인 것 같고
-
빠빠뇨
-
다이어트가 아닌데 걍 돼지잖아 ㅅㅂ
-
중경외시 건동홍 국숭세단 << 여긴 빠삭함뇨 제작년에 국숭세단 공대 건동홍 교차...
-
수험번호도 만약에 똑같이 써 버리면 그냥 1차 합격자 그대로 다 뽑는 거 아님?...
-
이별이 두려워서 3
시작하지 않으면 진짜 좋아하는 게 아닌 건가요
-
독서 국어 강사 4
누가 가장 좋나요???? 언매 문학은 이번에 다맞고 독서는 30분정도 썼는데 많이틀려서요…
-
서성한 되는 과 있을까요? 내신 1점대면 고대 낮과 교과 상향 가능성 있을까요?
-
보통 1월 말까지는 계속 19만원인가요?? 작년엔 어땠어요?
-
졸린 사람 특징 2
졸림
-
님들이 공경돌렸는데 이스쿼드다 그럼 어떤생각드심?
-
나 문학 풀 때 0
처음 읽을 때는 거의 이해 못하고 문제 선지들 이런 거 보면서 작품 이해하고 푸는데 이게 맞나
-
흑흑
-
수정사항 FAKER - 29일 10PM -> 11PM - 30일 10PM -> X
-
그동안 국어 풀면 문학은 잘 나오고 독서에서 와장창 깨졌어서 독서 공부만 햇네요...
-
후한건가요 짠건가요
-
굶으면 ㅈ~~~ㄴ 잘빠짐
-
김승리or정석민 현우진 이영수 최적으로가려고합니다 환급받는다는마인드로가려하는데 어떤가요
-
제발
-
피곤하구나 16
그래도 다음 주 한정 목금 공강이 되어버렸어요
-
선착1 5천덕 3
내놔!
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼