눈풀가능?
삼차함수 비율관계로 마무리됩니다.
인수의 관점에서 x를 묶은 뒤에,
나머지 부분을 관찰한다고 보셔도 돼요.
끝!
#무민 #짧은칼럼
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
운전면허, 알바 제외하고 추천좀 해쥬라 저번주부터 폰만보는데 이제 질림 ㄱㅋ 같이...
-
듄탁해와 개념강좌들을 포함하고도 유기한 수학컨이 이기는 모습 버린 컨텐츠 + 책장에...
-
과탐이 더 재밌는데..
-
무휴반 1일차 1
일단 풀파워 얼버기
-
얼버기 4
출근 준비 시작
-
난 밤샜는데..
-
언미물화 원점수 희망편 98 88 48 45 절망편 95 88 47 45 국어(선택...
-
기차지나간당 4
나는야 폭주기관차
-
탐구 고민 0
원래는 그냥 물1 하려했는데 다들 하지말라그래서 고민이네요 ㅜ
-
기상 완료 오늘 예비군 1일차임 아..
-
중앙대에서 반수한거라.. 학교는 바꾸고 싶네요
-
다이어트하는법 3
밤낮 주에 한번씩 바꾸고 하루한끼먹고 음료수 제로로마시면됨 이방법으로 73-55됐다...
-
이런감각오랜만인걸
-
잘자래이 3
7시 약속은 아침이지만 8시에 보자.. 친구야..
-
지금 700kg임
-
ㅇㅇ
-
진짜잠뇨
-
공부관련 질받 ㄱㄱ 22
-
키가 있어서... ..
-
흠흠
-
이거보는사람 4
잠만보임.
-
올해도 솔크네 10
송도에서 커플들 돌아다닐 꼴을 생각하니 벌써 개열받는구만..
-
아 맞다 내일약속이 15
지금 생각남 13시임... ..
-
궁금
-
메디컬이나 서울대 가고 싶음 국어 솔직히 단어 틀이라 존나 억울하긴 함 무튼 현재...
-
고정맴버인듯 지금 활동 하시는분들
-
지랄하지마셈뇨
-
10덕이 만듬ㅋㅋㄱㅋㄱㅋ
-
라인봐주실분 4
진학사에선 국어 백분위 90뜨긴하는데 한양대는 될까요? 메가 모의지원은 안정으로...
-
머임 5시임? 3
ㄹㅈㄷ
-
덕코가 늘었다 6
많이는 못준다 진짜다
-
그게아니면 시간이 말이안된다
-
수특으로 독학할땐 이건 아니다 하고 접긴 했는데 고정 50 가능하다길래 다시...
-
할거 다햇다 자러감뇨 17
빠빠뇨
-
알라미라고 알람미션 거는 앱이 있는데 2자리 사칙연산 암산 5개 걸어놓아도 풀고...
-
대학라인 몇개바뀜?
-
솔직한 투표 부탁드립니다
-
진심 활동 하는사람 17
안자는 이유가 뭐야?
-
딸기우유 도시전설있잖슴 11
그거 내가 ㅈㄴ속아봄
-
스펙평가좀 9
키14 몸무게3 무직백수 오르비많이함 어떰뇨
-
고딩이 논문 읽으면 11
머리 굳고 용어 하나하나 다 찾으면서 꽁꽁 싸매면서 수십분~1-2시간 읽어야...
-
생2보단 가능성 높나 한번 더 하려는데 생2 버리고 갈지 고민이네요.. 24부터해서...
-
?
-
ㅇㅈ2 9
ㅎ
-
잔다 6
르크 ㅋㅋ
-
안녕하세요 10
님들 왜 다 안 잠?
-
기차지나간당 8
부지런행
-
진짜 잔다. 6
이젠 진짜로 자야해.. 진짜 잘게요..
-
내 성격먼거같음? 11
맞추면 그냥 이뻐해드림
2017년 11월 고2 학력평가 가형 30번이 생각나네요 ㅎㅎ
이 문제인가요?!
그렇습니다.
걸어다니는 평가원 아카이브 ㄷㄷ
심지어 평가원이 아니구나
맞췄당 ㅎㅎ
시대에서 이거 처음 배우고 충격받음
유익하네요
빨간점 a 노란점 b로 두고
4 + b = 2a
4 + 4b = a^2
무지성으로 근계관 쓰는방법도
나도 모르니까 그냥 이랬는데
두번째 식은 어떻게 나온 거애요??
4차 다항함수 식에서
3차항 계수는 근의 합(a+b+c+d)
2차항 계수는 두 근끼리의 곱의 합(ab+ac+ad+bc+bd+cd)
1차항 계수는 세 근끼리의 곱의 합(abc+abd+acd+bcd)
0차항(상수항) 계수는 근의 곱(abcd)과 관련이 있는데,
4차와 직선(1차)를 연립해봤자 2,3,4차항은 보존(불변)이므로 근의 합과 두 근끼리의 곱의 합이 유지됨을 나타낸 수식입니다
근데 저거 과정 수식 좀 알려주시면 안되나요?
능지가 딸려서 이해가 안돼요 ㅠ
인수나누기, 기울기함수 관련 칼럼 찾아보셔요
참고가능한 사진 하나 첨부해드릴게요
혹시 칼럼 어디서 가져오신건지 여쭤봐도 될까요,,? 가서 읽어보고싶어서요
헤헤
간격곱이 뭔가요
거리곱이라고 검색해보시면 나올거에요
https://orbi.kr/00062385201
이 칼럼 맨 마지막 부분에 설명되어있습니다 :)
와 신기하네요
저는 엄청 발상적으로 근의합 원리처럼
일차를 사차에 더해도 2차항은 그대로일 테니ab+ac+ad+bc+bd+cd가 일정하게 나오는 원리로겨우 눈풀햇어요
권경수가 알려줌 ㅋㅋ
앗… 이게 이렇게 유명해져 버리면…..!!!
기울기함수 느낌이네요 볼록접에서 극값을 갖는...
권경수의 몫합수 ㄷㄷㄷ
님 ㄹㅇ권경수인가..
이동준의 인수나누기...?
딱 이거다 ㅋㅋㅋ
권경수의 차원 찢기 ㄷㄷ
어려워요 ㅠㅠ