방정식에서 식으로(식전개와 그래프추론)
중간고사가 곧 시작이라 최근에 활동에 뜸했네요.
아직 예1이라 큰 부담감은 없지만 또 막상 혹시 유급...? 이런 걱정이 생기네요
이런게 메디컬 학과들의 고충이구나 싶지만 뭐 면허를 생각하면 이 정도 쯤이야 하기에 ㅎㅎ
서론이 길어졌는데 오늘은 문제에서 방정식이 나왔을 때 어떤 반응을 해야하는지 살펴보죠
1. 전개 or 인수분해
가장 기본적인 첫 접근입니다. 풀어져있는 식을 간략하게 정리합시다,
예시를 통해 이해해보죠
복잡한 식이 있어도 당황하지말고, 고등수학에서 식은 전개 or 2차 평면 위의 Graph 로 이해하면 됩니다.
전개하기가 조금 꺼려진다면 치환을 해서 새롭게 방정식을 만들어보는 것도 좋은 skill이다.
2. 좌표평면 위에서의 그림 (graph)
위의 문제를 마저 생각해보자. f(x)라는 식은 1, x, -x 라고 서술된다.
무슨 의미일까?
좌표평면에서의 그림을 생각해주면 된다. 거의 대다수의 공통과목 준킬러 문제는 2번 관점이 매우 중요하다.
복잡한 상황을 좌표평면 위에서 그림으로 어떻게 옮길 수 있는지를 계속 연습해줘야한다.
자, 그러면 조금 더 복잡한 친구들을 살펴보자.
* 초록색 내용 : 간단하다. 두 식이 같다 ('f=g')라고 하면 f의 그래프와 g의 그래가 만난다로 해석된다.
* 빨간색 내용 : 4점을 그냥 거저로 주지는 않을 거다. 우리가 아는 형태로의 식 조작은 기본적인 skill이다.
Last
작년 22번 killer를 살펴보자.
g는 접점의 흐름이라는 것을 파악해야 하는 아주 잘 출제된 문제다.
하지만 기본적인 뼈대는 식 조작과 한 문장의 식을 그림으로 옮기기다.
사실 굉장히 어려운 내용이다. 상황도 워낙 다양하기 때문에 연습이 많이 필요한 단원이라고 생각한다.
과외를 할 때도, 항상 graph 추론 그리고 식->그림으로 옮기기을 중하위권 학생들이 어려워한다.
하지만 끈기를 갖고, 결국 우리가 배우는 함수라고 해봤자 1-4차 삼각 그리고 지수로그함수가 끝이다.
평소 문제를 풀어볼 때도, 단순히 전개만 하지 말고 그림으로 그래프를 해석해보는 연습을 해보자.
*** 온라인(줌) 수업 수강생 모집 중입니다!! 관심 있으시면 연락주새요~
0 XDK (+1,000)
-
1,000
-
대통령이 그렇게까지 했다는거에 이유가 있을거라 생각하긴 했는데 오르비에선 별 언급이 없네요
-
옮만추하고 후기 남김 32
ㅇㅇ
-
그냥 ㅈㄴ 예쁘자너ㅋㅋㅋ 아이는 탁한 느낌이야
-
누난선생나는학생바로쓰자조퇴서
-
근데 출근했어ㅠ
-
군수를 하는데.. 제가 만약 올해 2025년 6월 입대를 하고 수능을 치러다 쳐요?...
-
학벌로 무시당하고 긁힌놈 ㅇㅇ
-
주말동안 조발 기대도안해야겟다
-
해보러왔음 6
제발 기적이 일어나서 외대 합격하게 해주세요... 내 앞분들 추합으로 더 좋은대학 가게 해주세요
-
질문받음 19
학습 관련 질문 환영
-
우리는 태어나기도 전에 어떤곳에서 죄를 지었을 수 있음 그래서 이 현세에서 고통받고...
-
분러 4일차 2
-
성적 변화 어떠셨나요? 궁금..
-
박광일 어떰? 1
이투스 247다녀서 패스는 있는데 어떤가요? 문학 함 들어보고 싶은데
-
샤워를 해볼까 4
드가자
-
면접면접 4
호엥호엥
-
갑자기 여자발 겨드랑이 계속뜨고쳐난리냐 본적없다고!!!
-
왜지 잇올 집만 반복했는데 그냥죽으라는거지?..
-
가자 ㅅ서울로
-
ot 바이럴 goat임 ot 들으면 진짜 안듣고는 못견디게 만듬 근데 막상 들어가면...
-
님들은 여기서 뭐뭐가 정부 지원금/구조금이 필요하다 생각함? 1.아동학대 피해자...
-
원래 계획했던게 많이 틀어져서 지금 알아보고 있는중인데 동네에 있는 국어학원은 다...
-
설마 최종합격자 76명중에 14명이 점공을 안했었다는건가요..?? 중경외시라인인데...
-
부산가는길 2
떨린다ㅠㅠ
-
이 갬성 조름
-
너의 이름 뭐시기 시달소 많잔아 현실은 난 아저씨란거야..
-
재밋나요
-
아 넘ㅁ졸리다 0
40분뒤 퇴근인ㄴ데진심졸림 ㅠ
-
나 심심한데
-
몬스터 마셔야겠다
-
얼버기 9
Hi
-
"진짜 다 의대 갔나봐"…KAIST 마저 '이럴 줄은' 초비상 10
의대 증원에 따라 공대 인재 궁핍 상황이 현실화할 조짐이다. 최고 과학 인재가...
-
이해할수업군
-
정말 멋잇는 문제 4 15
평면 위에 2n개의 점이 있는데, 어느 세 점도 한 직선 위에 있지는 않다. 이...
-
해뜰시간에 잠만처자
-
기차지나간당 8
부지런행
-
문득 든 생각 1
의대생 살인사건으로 인해 면접이 갑자기 빡세지지 않을까…하는 생각이
-
f는 정의역과 공역이 모두 자연수인 일대일대응 함수이다. 다음을 만족하는 자연수들의...
-
오늘은 안자야겠다
-
얼버기 6
-
파이어펀치는 너무 실험작이라는거만 빼면 ㄹㅇ 띵작임 재능의 원석 그자체
-
방금 방구낌 3
고요한 기숙사에 내 방구소리만 울려 퍼졋음
-
오르비 눈팅하다가 비지원자도 3개 점공 볼 수 있다고 해서 상향 카드로 마지막까지...
-
정실은 루비가 맞긴함 아이 카나 아카네 결국 사리나의 허상에 불과
-
오늘 할 것 0
수학 공부 세탁소에 옷 맡기기 맛잇는거 먹기 끗
-
오늘 첫끼가 오후 8시임..
-
꾸중글 2
꾸중
-
동생 박광일 듣게하려고 이투스 끊으려하는데 월간구독 이런거밖에 안보임...
-
사이노와 비
-
2^n+n=m!을 만족하는 양의 정수의 쌍 (n,m)을 모두 구하여라. (풀이도..)
최댓(극대)값 최솟(극소)값 실근의 개수.. 그래프 표현임을 인지하는 게 중요한 거 같아요
6평 현장응시 하시나요?