[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 ...
최근 수능 난문이
어떻게 만들어 지고 있는 지 ...
알아보겠습니다.
미적분 응시자 분들의 경우
아래의 두 문제의 공통점에 대해서
생각해보신 적이 있으신가요 ?
위는 2022 학년도 미적분 최고난문이고
아래는 2023 학년도 공통 최고난문입니다.
위의 두 문제를 보고
다음의 생각 3 가지의 생각이
든다면 열공하는 학원 강사이거나,
최상위권 수험생일 가능성이 높습니다.
(1) 점(을 좌표평면에 표시한다.)
(2) 계산 때리는 문제가 절대 아니다.
(즉, 그림으로 먼저 접근해야 한다.)
(3) 미적분의 출제 아이디어는
2~3년안에 수학2에서 반드시 출제된다.
위의 세 가지의 생각은
넘나 중요해서 ...
올해 수능에
위의 관점이 출제될 것이냐고
묻는다면
당연히 100 %
YES
입니다.
수능이 다른 시험들과
(즉, 6모, 9모, 학평, 사관, 경찰대)
수 많은 N제, 실모, ...
등과 차별점을 갖는 지점은 ...
(아주 당연해 보이지만)
근본에 대한 물음을
한다는 것입니다.
위의 두 문제에 관련된 기본 이론은 다음과 같습니다.
(아래는 2024 이동훈 기출 수학1 평가원 편에
수록되어 있습니다.)
예를 들어 등식
f(2g(x))=3x --- (A)
이 주어지면, 다음의 생각이 바로 떠올라야 합니다.
점 (2g(x), 3x)는 곡선 y=f(x) 위에 있다. --- (B)
그리고 이를 좌표평면 위에 그림으로 나타내야 합니다. --- (C)
(A), (B), (C)
중의 하나라도 문제에서 주어지면
나머지 두 경우를 쓰거나, 그리거나 해야 합니다.
이제 맨 위의 두 기출문제의 붉은 칸을 다시 써보면
(위)
곡선 y=g(x) 는 점 (2x, 2f(x))를 지난다.
(아래)
곡선 y=f(x) 위의 점 (g(x), f(g(x))에서의 접선의 기울기.
입니다.
그리고 이를 좌표평면에
그림으로 나타내야 합니다.
따라서 위의 두 기출 문제는
문제 풀이의 출발점이 같습니다.
이런 식으로 평가원에서는
미적분에서 출제된 아이디어를
수학2 또는 수학1에 이식하여
최고 난문을 만들어내고 있습니다.
.
.
.
여기까지 설명을 이미 알고 있었다면
안정적인 1등급 또는 만점인 분들이고 ...
조금이라고 처음 생각하는 것이 있다면
2등급 이하 입니다.
이제 두 기출의 풀이에서
실제로 적용해보겠습니다.
(아래의 글은 풀이의 일부를 포함하고 있으므로
문제를 풀고 나서 읽기 바랍니다.)
2024 이동훈 기출 미적분 평가원 편 풀이의 일부입니다.
2024 이동훈 기출 수학2 평가원 편 풀이의 일부입니다.
위의 두 문제를 계산 만으로 푸는 것은
출제 의도를 이해하지 못한 것입니다.
예전과 달리 수능에서는 ...
식, 그림의 풀이 시간의 차이가 큰 문제도
출제하고 있습니다.
이는 출제 가능한 문제가
이미 소진되었음을 의미합니다.
상황이 이러한데 ...
산술적으로 완벽한 풀이를 지향하는
풀이를 고집한다면 ...
수능에서 좋지 않은 결과를
얻을 수도 있습니다.
.
.
.
이처럼 교과 과정의 중요한 개념은
매년 반복 출제되고 있으므로
(그것도 최고난문으로)
...
무엇인가가 반복된다 ?
그것은 우연이 아닙니다.
평가원이 여러분에게
보내는 메세지 입니다.
오늘 하루도
열공하세요 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개씹허수입니다 0
모래주머니 공부법으로 모의고사 풀때는 오겜마냥 규칙 정하고 체계 세워서 푸는데 그냥...
-
팩트) 0
다
-
궁금하네
-
컵으로 먹는거보다 밥그릇에 물떠먹는 게 더 맛있음 약간 약수떠먹는 그 느낌
-
역시 대 마 드 4
여러분!! 저 친구가 그 맨유의 희망이에요!!
-
입시에 무지했던 현역 때 친구가 하도 점공점공하길래 점프공익 줄임말인가 이상한...
-
고대 점공들어오라고 이3끼들아.
-
모아서 볼 수 있나오
-
예상 경쟁률보다 높으니까 개쫄리네 진짜 메디컬이면 좀 낙지좀 써라;;;
-
66명+ 연뱃받을 예정이신 1명 (화이팅!) 목표까지 남은 개수 34개
-
언제가 점공 5일차인지.
-
뭔일인지 정리 6
좀 부탁해여
-
ㅈㄱㄴ
-
단순 신고 누적으로 글이 내려감 어둠의세력들이 단체로 몰려와서 여론조작 가능
-
성장하고 나아갈 수 있는 해이길
-
개허수 현역 정시파이터 수학 학습법 알려주세여 ㅠㅠ 3
현재 예비고 3이고 고2 모고는 3-4 진동입니당 수학은 현우진쌤 시발점 수1 수2...
-
역사 질문받음 3
25수능 나무위키공부법으로 1등급 먹음 수특수완 문제만 1회독함 제발...
-
14시간 게임 10시간 취침메타라 울었어ㅜㅜ
-
차단목록 ㅇㅈ 11
소수정예엘리트집단입니다
-
25미적 100점보다 24미적 92점이 수학 더 잘하나요
-
반지름이 1인 원에 내접하는 사각형의 네 변의 길이의 곱의 최댓값을 구하여라.찍맞...
-
시대 재종 반 5
여러분 이 성적이면 시대 재종 어느 반 들어갈 수 있나여?? 목동 대치 반이 다를까요??
-
오르비에서 떡밥도 몬따라가는데 오프라인은 진짜 힘들어..
-
알려줘요
-
엉아야 17
과외 받을래? ㅎ.ㅎ
-
궁금쓰
-
어디서 싸움? 0
ㅈㄱㄴ
-
하루에 8시간 분량이라도 넘겨보고싶었는데 하반기에는 단 한번도 하지못함 이러니 내가...
-
개추 누를게요
-
ㄹㅇ
-
처음 해보는데 너무 재밌다
-
다들 화낫서...
-
설수의 정시면접은 걍 상식이 최소한도로 존재하는 사람이면 면접떨이 존재할 수 없는...
-
낮에는 코스프레부터 온갖 씹덕들이 판치는데 저녁만 되면 귀신같이 일진 포스 인싸들이 점령함 ㄷㄷ
-
배틀물 애니 특 0
중요한 회차에서 제작비 몰아쓰고 나면 그다음 회차는 눈에띄게 작화가 어색해짐
-
진짜 개힘든데 오후 5시부터 새벽2까지 단순노동만 반복하는데 너무 힘듬. 내가...
-
빨리 점공올리라고 시발 ㅋㅋ
-
그걸 해내네
-
a갤이 낫지
-
인하대 학잠 2
어디서 사요?
-
올리고 나서 10분 안에 팔로우 2명 늘었어 기뻐
-
공대남은 연애하기 개씹헬인것같음 걍 다녀보니 그렇게 느낌... 애초에 과cc자체도...
-
근데 진짜 긁히셨나봄뇨 16
아무쪼록 힘내셨으면••
-
진짜 어딜봐도 예뻐서 눈 둘 곳을 못찾았음…
-
현역이 ㅋㅋ 1
과탐을 하는데 1년만에 1 받은 사람들도 있나요? 있다면 머리가 비상해야만하는가.....
-
나 고3 4모때 불안증세 도져서 국어 한번호로 기둥세우고 8등급이었나 받음
-
성적ㅇㅈ은 많이했으니 1년 공부량이나 보고가셈
-
연애보다 7
애완너구리가 필요해…
관점 잘 살펴봤습니다! '미적분의 출제 아이디어는 2~3년 안에 수학2에서 반드시 출제된다.'라는 말이 지금까지의 흐름을 볼 때 크게 틀린 말이 아닌 것 같아 더 와닿아요.