[Team PPL 칼럼 53호] 수능 수학 공부법 - 100일만에 4등급 올린 썰 푼다.
안녕하세요! Team PPL 수학 팀원, 수학왕 김하냥T입니다.
Team ppl의 일원으로 수험생 여러분들께 칼럼으로 인사드리게 되어 영광입니다!
6월 모의고사를 치른 후, 시간은 흘러 어느덧 마지막 여름방학도 끝이 다가오고 있는 지금.
수능도 D-100을 지나, 수능 D-day 두자리 수를 달리고 있는 지금
2015년도 당시, 이과로 6월 모의고사 5등급, 9월 모의고사 4등급, 수능에서 1등급을 받았던 저의 경험과
과외 선생으로 50명 넘는 학생들과 만나보면서 성적을 올렸었던 경험을 공유해드리겠습니다.
남은 기간동안 본인의 공부 방법에 어떻게 적용하고 활용할 수 있을지 고민해 보시면 좋을 것 같습니다.
먼저, 수학 성적이 잘 오르지 않는 학생들은 크게 3가지 유형으로 나눌 수 있을 것 같습니다.
1. 개념 공부를 하지 않고 문제 양치기로 수학을 해결하려는 학생
2. 개념 공부의 필요성은 느끼지만, 그저 공식 외우기 식으로 개념 공부를 하는 학생
3. 개념 공부를 완벽하게 했지만, 어려운 문제에 개념 적용을 잘 하지 못하는 학생
각 유형별로 어떻게 대처를 하고, 공부 계획을 세워 나가야 할지 같이 생각해 봅시다.
1. 개념 공부를 하지 않고 문제 양치기로 수학을 해결하려는 학생
내신 시험에서 교과서에 나오는 문제 그대로 내면서도
선생님들께서 숫자 몇개, 문장에서 단어 몇개만 바꾸더라도
당황하고, 제대로 된 문제 풀이를 잘 하지 못하는 우리입니다.
문제 양치기로 수학 성적을 올리려고 하셨다면, 내신에서는 어느정도 효과를 볼 수 있었을테지만
매번 신유형이 나오는 수능에서는 문제 양치기로는 절대 원하는 성적을 얻을 수 없습니다.
여러 선생님들께서 강조하시지만, 수학에서는 정확한 개념 공부가 필수 입니다.
또한, 문제 양치기를 할 때에도 해당 유형의 친구들은 과외나 인강, 학원에서의 수업을 듣고
그저 그 선생님의 풀이를 그대로 "기억"해서 문제를 풀려고 하는 친구들이 많은데요.
선생님의 풀이를 기억해서 문제마다 풀어나가는 것이 아니라,
그 선생님의 풀이를 "이해" 한 다음, 문제를 풀어보면서 그 이해한 개념들을 "적용"시키는 연습을 하셔야 합니다.
인터넷 강의를 들으면서도 "아 여기서는 이 선생님께서 이 개념을 이렇게 쓰셨구나."
" 아 이 문제의 이 지문에서는 이 단서가 어떤 개념을 쓰라는 말이구나."
인간의 기억력은 한정되어 있고, 그저 문제 풀이를 기억해서 풀려고 하면,
수1 공부를 마무리 했을 때는 수2가 가물가물하고,
수2 공부 마무리를 했을 때는 수1이 기억이 나지 않는 악순환이 반복..
꼭 풀이를 기억하는 것과 풀이를 이해하고, 나의 언어로 재해석 할 수 있어야 합니다!
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
2. 개념 공부의 필요성은 느끼지만, 그저 공식 외우기 식으로 개념 공부를 하는 학생
수학은 다른 과목들과 달리, 중학교 때부터, 더 나아가서는 초등학교 때 배웠던 개념에 살을 붙여
지금 고등학교 때 배우는 개념이 만들어졌기 때문에, 선행이 되어야 하는 개념들이 매우 중요합니다.
그렇기 때문에 한 번 개념을 놓치게 되면, 앞에 놓쳤던 개념이 지금 단원에 영향을 주게 되고,
다른 과목에는 찾아보기 힘들지만, 수학이라는 과목에서는 흔히 볼 수 있는, 소위 말하는 '수포자'가 생기기도 하지요..
특히나, 킬러 문제의 난이도가 낮아지면서, 준킬러 문제의 수가 늘어나고,
준킬러 문제들의 난이도가 올라가고 있는 지금 수능의 기조에 따라가기 위해서는
더더욱이 개념 공부의 필요성이 커지고 있습니다.
특정한 공식이 나오는 과정에서 1,2,3 단계를 거쳐 공식이 나오게 된다면,
공식을 도출해내는 과정에서 다음 단계로 넘어가는 과정이 정확하게 왜 진행이 되는지,
특정 단원에 개념들과 연계되는 개념들은 어떤 것들이 있는지, 선행되는 개념은 어떤 것들이 있는지
면밀하게 파악하고 공부하여 개념을 체계화 시켜야 합니다.
수학에도 드라마와 같이 서사가 존재합니다.
수2를 예로 들어보았을 때, 미분 가능조건이 1. 연속 2. 좌미분계수=우미분계수 라는 조건때문에
미분을 배우기 전에 연속파트를 배우는 것이고, 연속의 조건이 1. 극한값존재 2. 함숫값 존재 3. 극한값=함숫값 이기 떄문에 함수의 연속 파트를 배우기 전에 함수의 극한을 배우게 됩니다.
여러 선생님들이 강조하듯, 나무를 보는 것이 아니라 숲을 봐야 한다. 라는 말이 나온 이유가
각 단원의 큰 흐름을 이해하고, 작은 단원의 주요 문제를 풀어 나가야지,
작은 단원의 문제들을 푸는데 급급하다면 모르는 문제를 만났을 때 그 길을 찾아가기가 더욱 힘이 들 수 밖에 없습니다.
자기 전, 혹은 다른 장소로 이동을 할 때에 머릿 속으로 개념의 흐름을 잡는 것은 큰 도움이 될 겁니다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
3. 개념 공부를 완벽하게 했지만, 어려운 문제에 개념 적용을 잘 하지 못하는 학생
수학은 다른 과목 문제들과 다르게 한 문제에 여러 단원들의 개념을 한군데 녹여 문제를 출제할 수 있습니다.
그렇기 때문에 학생들은 "모르는 문제를 만났을 때, 도저히 어떻게 건드려야 할지 모르겠어요..."라고 말하곤 합니다.
먼저는 단원에 등장하는 개념이 문제에 어떻게 적용되는지, 문제들을 정말 많이 풀어보고 경험해보셔야 합니다.
쎈과 같은 유형별 문제집으로 단원의 개념이 어떻게 문제에 적용되는지,
마치 AI 들이 학습을 하면서 빅데이터를 만드는 것처럼, 다양한 문제들을 풀어보며
"아 이 개념은 문제에 이렇게 적용될 수 있구나." 를 발견하면서 문제를 풀어보셔야 합니다.
그 이후, 유형별 문제로 계산력에 기반을 다지고, 기출 문제를 풀어보시면서 실전 감각을 기르셔야 합니다.
기출문제집을 풀어보시면 아시겠지만, 쎈과 같은 유형별 문제집은 내신에 특화 되어있고,
모의고사 기출문제집은 사고력을 요구하는 문제라 어렵더라도 사뭇 결이 다르다는 것을 알 수 있습니다.
특히나, 모의고사 문제 중 어려운 문제들은 한 문제에 여러 개념들이 복합적으로 사용되어 있는데
그래서 가장 중요한 것은, "오답노트 작성" 입니다.
매 해 새로운 유형의 문제가 나오고 있지만, 개념과 개념 사이 연결고리는 한정이 되어 있습니다.
수능도 벌써 30년이 넘게 진행이 된 시험이고, 한정된 범위에서 이미 고여버린 시험이라고도 볼 수 있습니다.
그렇다면, 한정이 된 개념 연결고리들을 어떻게 정리하고, 공부를 하느냐가 중요한데
저는 현역 당시 3공 바인더 노트를 활용하여 오답노트를 작성하였습니다.
3공 바인더 노트는 사이 사이에 종이를 추가하여 정리할 수 있다는 장점이 있는데요.
단원 별로 틀린 문제를 정리하면서 그 문제에서 내가 발견하지 못한 개념은 무엇인지,
해당 단원에서 연결되어서 나오는 개념들은 어떤 것들이 있는지
하나 하나 정리해 나가다 보면, 내가 어떤 파트가 취약한지,
취약한 파트가 있다면 어떤 개념을 잘 활용하지 못하는지 정리가 될 겁니다.
수능이라는 시험은 짧게는 2년, 길게는 6년의 과정의 공부 내용을 한 번에 시험보는 것이기 때문에
전 과정을 계속해서 반복 복습하는 것은 비효율적이라고 생각합니다.
내가 취약한 파트를 골라내고, 남은 시간동안 그 취약한 파트에 집중하여 약점이 될 만한 부분들을
줄여나가셔야 합니다.
다양한 문제들을 경험해보시고,
반복 복습하시면서 잘 안되는 부분들을 오답노트로 정리하신 다음,
시중 N제 문제집들로 취약한 파트들을 계속 보완해 나가신다면
남은 기간 동안 충분히 원하시는 성적을 이뤄내실 수 있을 거라 믿습니다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
수능까지 남은 날짜 단 100일.
지푸라기라도 잡는 심정으로 공부 방법을 찾고 있는 당신에게,
충분히 가능하다, 쉽지 않은 도전이지만 불가능하지도 않다. 라고 말씀드리고 싶습니다.
공부 방법에 대해 궁금하신 점 있으시면, 댓글 달아주시면 친절하게 답변해드리겠습니다.
칼럼 제작 |Team PPL 수학연구소
제작 일자 |2022.08.15
Team PPL Insatagram |@ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금도 간보나
-
그냥 아무것도 안하고 있다간 이도저도 못하고 탄핵될게 뻔하고 그러면 국민의힘 당...
-
자기 정치적으로 손발 다잘린건 지가 처신을 잘못해서라고 쳐도 정부에서 뭐만 할라하면...
-
그냥 총선때부터 쥐죽은듯이 있고 조용히 임기나 마치지 씨발년아
-
아무리 그래도 설법에 검찰총장까지 해먹은 양반이 정말 아무 생각 없이 일을...
-
9수평균 3
9평ㅋㅋ
-
이길 수 없는 게임이지만 누군가 나와야 하기에 나오는 것
-
때는 2024년 12월 4일 어느때처럼 아주 여유로운 밤이었어. 고등학교 2학년...
-
대령시절
-
탄핵 두번이면 0
사실상 국제사회에서도 좋게 보지않을건데 애초에 박근혜때 탄핵을 쓴게 진짜 뼈 아프네...
-
바지를 내리는거임? 진짜 이 가사에 무슨 뜻이 있을까
-
이대로 끝이겠지만...
-
석열이형 ㅅ발아 0
님땜에 3시간동안 기말 공부도 못하고 유튜브랑 디시만 주구장창 봤잖아요 내 학점 책임져라
-
ㅅㅂ 이대로 끝이면 지능 문제 아닌가
-
진짜 이딴게 국가원수? 10
하...
-
각성한 한동훈의 세계선이 이기는 거였는데 이러면 이재명 거의 확정 아닌가요??
-
뭐가 더 있는 게 아니라 진짜 아무 생각이 없는 거임
-
계엄선포하고 술먹고 자러감?
-
이쯤되면... 0
<--- 이 새끼 깜빵 보내지말고 명예 민주당원 시켜줘야되는 거 아님? 박근혜보다...
-
조마조마햇다 이녀석아..
-
석열아 햄이 컨닝페이퍼 던져줬다ㅋㅋ
-
나는 이제 대한민국 제21대 대통령 이재명을 받아들일 준비가 됐다 0
그리고 해외대학원 가서 탈조선이나 해야지
-
불안한데 15
설마 이럴거라고 예상을 못했을 리가 아무리 그래도 설법 사시 출신 검찰총장이였는데
-
뭐 계엄을 이렇게 해
-
단타 낭낭하다 1
슛ㅋㅋ
-
현재의 법체계는 3·1운동, 6.25. 4.19, 5.18, 6월 민주항쟁을 거쳐...
-
흠 8
-
farewell
-
인스타 계정들 카드뉴스에 릴스까지 만들어 올리는 속도가 걍 미쳤음ㅋㅋㅋㅋㅋㅋ
-
그와중에 여자 승 ㅋㅋㅋ 한남들 화력 진짜 ㅈㄴ 부족하구나싶다
-
음...
-
씨발 집지키라고 들여놓은개가 주인을 물어? 아무리 윗대가리들이 시켰고, 아무리...
-
내일 학교가야 하거든~...
-
근데 계엄령 몇달 전부터 준비한 것 치곤 너무 허술함 5
제대로 할거면 언론사 장악부터 들어가는게 먼저 아닌가..
-
메인안보내줘도됨 4
-
대한민국헌법 제77조 ⑤ 국회가 재적의원 과반수의 찬성으로 계엄의 해제를 요구한 때에는 대통령은 이를 해제하여야 한다. 1
대한민국헌법 제77조 ⑤ 국회가 재적의원 과반수의 찬성으로 계엄의 해제를 요구한...
-
-99% 청산엔딩 입갤 예정 ㅋㅋ
-
가상아이돌? ㅋㅋㅋㅋㅋㅋㅋ 침투력 뭐노 ㅋㅋㅋ
-
이제 항상 전쟁 대비 해야될듯
-
진짜 자랑스럽네요
-
여자로 사는게 우리나라에서 살기좋을거같은데 뭐 ts빔같은거 실제로없나?
-
이재명 대통령 만들기 프로젝트
-
와 나라 진짜 #~#됐네
-
죽었냐 ? 해제됐으면 됐다고 선언을 하던가 무섭게 왜그러냐
-
ㅋㅋ
3개년교육청 기출도 전부 오답노트 해야한다고 생각하시나요?
오답노트는 가장 확실하지만, 가장 비효율적인 공부 방법 중 하나입니다. 기출을 여러번 반복해서 풀어보시고, 3번 이상 풀었는데도 풀이 방법이 잘 이해가 되지 않거나 개념들이 잘 적용되지 않는다면 오답 노트를 작성하시길 바랍니다!
인스타 보고 왔어요 ㅋㅋㅋ 멋있습니다~