기하이를 위한 꿀팁 (벡터 6평 30번)
고생이 많은 Geohaee 들.
이번 6평 30번과 관련한 꿀팁
세가지 간단히 알려드릴게요.
1. 정육각형에서는 보조선 활용
정삼/사/육각형 같은 도형은
보조선을 그려서 특수한 점을
미리 찍어놓으면 도움이 됩니다.
2. 벡터 해석이 어렵다면 일단 위치벡터로
벡터에 대한 다른 해석도 가능하지만
위치벡터로 바꾸고 정리하면
방정식 풀 듯이 구할 수 있어요.
3. 성분에 대해서 제대로 이해하자.
벡터의 성분은 단순히 좌표가 아니라,
서로 평행하지 않은 벡터로 분해하는 것이거든요.
이번 30번 문제에서 d벡터와 a벡터는
각각 e1벡터, e2벡터 같은 역할을 하고 있습니다.
위치벡터였던 식이
갑자기 성분으로 변하는 마법의 순간!!
신기하죠?
기하러 힘내시고.
칼럼 원하는 기하 문제가 있다면
요청 주세요~
30번 해설강의 풀버전은 아래에 있습니다.
벡터 관련해서는 강의가 필요한 학생은
<스킬 - 벡터를 다루는 다섯가지 관점>
잘 정리한 수업이 있으니 문의주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능은 끝났는데 1
왜 내 불면증은 안끝날까
-
내가 생각보다 잘하는거구나라는 생각이듦
-
잠을 못자 ㅅㅂ
-
강기원 김현우 장재원 박종민 안가람 이동준 ㅅㅂ 커뮤니티에서 후기들 알아보고있긴한데...
-
어그로 ㅈㅅ 87 74 2 93 93 동국대 철학괴 ㄱㄴ?
-
투과목잘알님들아 2
지2어떰?? 생2처럼 운이 크게작용함? 아님 정직하게실력만큼나옴?
-
얘네 지금 볼 필요 없음 그냥 놀아요
-
진학사? 2
다들 진학사 결제 하셨나요…? 아니면 다른 거 쓰시나용 요즘 걱정돼서 잠이 안 옴 ㅎ….
-
전날까지도 자꾸 실모에서 개념문제 하나씩 나가길래 수능날 실수하면 죽겠다는 마인드로...
-
오르비 땅따먹기 6
특정 검색어 도배 미코토 검색하면 내 글이 50퍼가 넘는다 흐흐흐
-
심심한데 0
뭐 질문해줘요
-
과탐과목 2
물원생투했는데 바꿀까요 그대로갈까요
-
걍 닉네임 안뜨면 안됨뇨? 왜케 거슬리지
-
고1 자퇴 고2 첫수능 평균 4 재수 후 평균 1.2 (나이로 재수) 수능 미적분...
-
서강대교 성수대교 한강대교
-
마렵네 :)
-
질병분류체계에 정신병으로 한국페미 집어넣어야한다 반사회적 인격장애와 경계선지능장애가...
-
똥줄타실것같음
-
이과고 연대 활우 성대 과학인재 중대 탐구형인재 썼는데 연대만 1차 붙어서 면접...
-
글 리젠이 없네 0
흑흑
-
미코토 이쁨 2
-
마히루 이쁨 0
-
타이탄 이쁨 3
-
걍 구라일 확률이 매우 높음뇨 커뮤에 치대 떡락한다 의대는 신이다 도배하고 다니던...
-
루비 예쁨! 6
-
종강언제함 5
ㄹㅇ
-
현기증인가 4
물에 한시간정도 들가 있었더니 살짝 어지러움
-
엄청 불안하네 갑자기 영어 1 아니면 다 망하는건데
-
제가 고1 때 자퇴해서 고2 때 첫 수능 보고 고3 (올해) 재수인데 사실 내년에...
-
성심당 애니플러스 애니세카이
-
부시맨 브레드 나오면 소스 한개만 나오니까 나머지 두 종류도 꼭 같이 달라고 하셈요...
-
팩트는 ㅄ이 맞다는거임 10
언냐 뭘 부정하고 있어
-
어떻게 대해야할지 잘 모르겠음.. 특히 그 사람과 다른 사람들 같이 있을때 스스로...
-
컴공 생각하고 있었는데 점점 ai발전하고 이미 기술자들 많은거 같은데 지금이라도...
-
안녕하세요. 처음으로 글 써봅니다. 일단 전 광역시중 하나에 거주하는 남학생입니다....
-
어케한거냐면 진짜 말그대로 하루종일 아무것도 안먹음 아이스아메리카노나 제로 음료는...
-
이게오르비지 ㅋㅋ
-
나랑 키배 잘뜨다가 어디갓어
-
상향으로 한장 쓴다면 고려대 철학과, 연세대 신학과 중 어디가 그나마 가능성 높아보이시나요..??
-
6평에도 언매 다 맞았었는데 시간도 많이 안쓰고 수능날 가니까 비가 내리던데 공부는...
-
작년 생명 엣지 1
엣지는 크게 안달라지나여? 살까해서..
-
학교가 수원이라 놀아달라고도 못함 ㅠㅠ
-
애기 때는 귀여웠는데 14
지금은 늙어버린 재수생이 됐음 엄
-
개인적으로 예수도 안믿지만 타로는 믿음 학교축제에서 타로 봤었을 때 매 우 정 확 했 음
-
지금은 95키로임 ㅋㅋㅋ
-
근데 돈이 없어...
미적,확통은 미적이 확통이인데 기하도 기하이로 부르는게 좋지 않을까요??
좋은 의견 반영하여 제목을 바꿔보았음
이번 30번 두번째 조건처럼
백터여러개에 오른쪽 하나일때 이번처럼 실수배조건이용할때도있고 어느때는 오른쪽 백터 분해해서 왼쪽이항해서 내분점 관점으로보던데 ... 차이를잘모르겠어요
식이 주어졌을때 해석하는 방법이 여러 가지인 것처럼 벡터를 해석하는 관점도 여러가지인거에요. 어떨때는 내분점을 이용하는게 쉽게 풀리기도 하는 것이죠. 근데 그게 문제마다 달라서요. 저는 5가지 관점으로 나눠서 연습을 하도록 하는데, 그중에서 마지막 관점이 위치벡터이고, 위치벡터를 이해하면 어떤 상황이더라도 식 정리를 해버릴 수 있어요.
감사합니다 그리고 질문하나만 더하자면 수학풀면서 태도를 만들어야하나요??
예를들어 삼각활용에서 원나오면
닮음,할선정리,더해서 180도,원주각 등등 이런걸 생각해야한다>>이런식으로요..
이번 수학 80점맞았고 여태그냥 생각없이 문제풀기만했습니다
음 그걸 태도라고 하는게 적절한지는 모르겠어요. 원과 삼각형과 관련된 교과서 개념을 모두 알고 있고, 시험에서는 그 중에서 하나를 연결시켜야 하고, 우선순위를 정해둔다, 라고 생각하는게 맞지 않을까요? 우선순위라는건, 할선정리같은건 외워도 되지만 증명을 해보면 삼각형 닮음이기 때문에 따로 외우는것보다 닮음이 더 중요하다 라는 생각을 하는게 좋을거애요.
기하는 풀이 방법이 미적분 계열 보다 훨씬 많기 때문에 유연하게 사고해야 해요. 그래서 어렵습니다.
선생님말씀은 문제마다 우선순위를 만들어야한다는거죠?? 저처럼 아무생각없이 그냥 푸는거보다???
아무 생각없이 푸는것보다는 원칙이 있는게 아무래도 좋겠죠? 문제마다는 아니고, 단원별로 또는 주제별로가 맞겠네요.
6평 기하 28번 여러 해설강의를 들어보았는데 와닿는 것이 없습니다 ㅠㅠ
28번도 올려봐야겠네요. 근데 기하는 보는 사람이 너무 적긴 하네요 ㅋㅋ 다른 해설강의는 어떤 부분이 와닿지 않았을까요?
'주축의 길이가 최대'라는 표현이 y=2x-3이 쌍곡선의 접선임을 확신할만한, 시험장에서 떠올릴 수 있는 합리적인 근거를 제시하는 해설이 없었습니다.
그렇군요. 해설강의 올리면 제가 완벽하게 이해시켜드릴 수 있을것 같은데요. 그 전에 간단히 설명드릴게요. 텍스트로만 이해가 될지는 모르겠네요.
일단 이 그림에 의해서 쌍곡선이 만들어진다는 것부터 이해하셔야 합니다.
그다음으로는 한 직선과 점이 있을때, 점으로부터 최단거리에 있는 직선위의 점을 찾기 위해서는, 점을 중심으로 하는 원(동심원)을 슉슉 그려가면서 처음으로 만나는 순간, 즉 접하는 순간을 찾는다. 이것과 정확히 같은 원리입니다.
감사합니다 아직은 알랑말랑한 그런느낌이에요 ㅠㅠ 그래도 자랑 컴퍼스까지 꺼내서 두뇌 풀가동 중입니다 ㅋㅋ
힘내라 기하이 :)
기하러 파이팅..!