a<b일 때 0<af(b)<bf(a)이면 f(x)는 위로 볼록?
게시글 주소: https://games.orbi.kr/0005003804
(09년도 대비 9월 평가원 수리 가형 11번입니다. 문제에는 x,y로 조건이 써있는데, a,b로 수정했어요.)
요약
다항함수 f(x), f(0)=0
0<a<b<1인 모든 a,b에 대해 0<af(b)<bf(a)이다.
이때 f''(x)<=0임을 증명.
-----------------------------------------------------------------
조건
다항함수 f(x), f(0)=0
0<a<b<1인 모든 a,b에 대해 0<af(b)<bf(a)이다.
보기생략
일반적인 풀이
0<f(b)/b<f(a)/a이므로 '그려보면' 위로 볼록인 개형이 나온다. 따라서 위로 볼록으로 잘 그려서 삼각형 열심히 만들어서 풀면 됩니다.(보기나 뒤쪽 해설같은건 생략할게요. 논지에서 벗어나니)
물론 저렇게 풀면 답이 잘 나옵니다만, 수식으로만 유도해보고 싶은데 잘 안나오네요.
우선 a<b일 때 f(b)/b<f(a)/a이므로 (0,1)에서 f(x)/x는 감소함수입니다. 즉 (f(x)/x)'<=0이고, h(x)=xf'(x)-f(x)로 놓으면 h(x)<=0입니다.
f(0)=0에서 h(0)=0이므로 h(x)의 그래프는 원점을 지납니다.
이제 h(x)가 (0,1)에서 감소함수임을 보이면 h'(x)=xf''(x)<=0이 되고, x>0이므로 f''(x)<=0, 즉 위로 볼록임을 증명할 수 있습니다. 그런데 이게 진짜 잘 안나오네요. 식조작을 어찌하면 좋을까요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
질문받아요 9
아무거나 환영이에요 올해 수능 본 현역입니다
-
늙기싫다 15
30되면 죽을까
-
누가누가 잘찍나 13
동물세포의 체세포분열과 감수분열에 관한 설명으로 옳은 것은? (2024 변리사 1차)
-
일단은 제 성적표고여 크럭스 오찬교님 글에서 딴건데... 혹시 문제되면 바로내릴게요...
-
항상 적정이나 안정만 넣었는데 컨설팅에서 3칸 합격 될만한 거 진짜 알려주고 합격...
-
시대 강기원 선생님과 김성호 선생님의 미적 수업 스타일은 어떻게 될까요? 그리고...
-
그래서 저도 애?니프사를 달아보았습니다 생존형 애니프사단인거죠
-
올해 깨달았다를 10번은 외쳤지만 정작 평가원 커하는 그냥 아모르겠다하고 아무 생각...
-
갑자기 확 오를까봐
-
수시는 지금 중앙대 1차 붙었고 (면접 있는거) 설대 고대 농어촌 1차 떨이고 고대...
-
고등학교 수학 배우기 위해서 꼭 필요한 중학개념 복습 시켜주기에 좋은 책 있을까요??
-
벌벌 떠는 중인데... ㅠㅠ
-
왜들 이러시는 걸까요...
-
수능수학 공부할때 수학상하 공부하는게 좋다고 보시나요??? 7
이거 강의수가 꽤 되네요 어떻게 생각하시나요???
-
어쩐지 3
메인글이 리젠이 안되더라니 차단박은 사람이어서 그렇구나
-
최저맞춰야되는데 될까 싶네요
-
항공대 0
화작80 미적 73 영어70 사문 39 생명 31 이과중에 아무과나 가능할까요? 원점수입니다
-
가끔 좀 과한 면도 있지만 전 좋아요 미미미누 나오실 때마다 재밌게봄뇨 올해도 텔그...
-
25시즌 3개 6,9,11 3개 세트 중에 가장 난이도 평이한 시험이 뭐에요? 이제...
-
번 먹고싶다 12
쫀득쫀득한 초코번이나 치즈번 헤헤
-
어떻게 마지막화도 아닌데 리타이어 시키냐고 진격의 거인도 안할짓을
-
제곧내.......뭐가좋음??
-
22번에 63을 썼다는 것 외에 대부분을 잊는 중이네요
-
3개년 70퍼 컷보다 환산점수 높은데 낙지 4,5칸 나옴... 확실히 짜긴 한 듯
-
얼마나 영향받음? 정시에서 내가 받은건 아님
-
쉬운 직업은 없다 13
쉬운직업? 거지 백수아니면 없다 모든 직업은 자기나름의 고충이 있다 정치인만해도...
-
그냥 날먹하고싶다
-
님들 그거 앎? 0
롯데리아 지파이 하바네로 재출시함
-
사정이 어려운 것 같아서 한두 번 늦게받았더니 과외비 76만원 들고...
-
경희대크라운관에서ㅎㅎ 음악은너무좋아요
-
우린 떨어질 것을 알면서도 더 높은 곳으로만 날았지<-이거 너무 좋아보이지 않나요?
-
올해 1학기때 저렇게하면서 힐링시간 개념으로 국어 공부했는데, 애초에 저건 공부도...
-
아도 내한 기념 3
노래듣기
-
단순히 분탕치는 게 아니라 저게 현실인데? 나 사람 살리는 의사 되겠다, 나 소아과...
-
내가 공대나 대학원생까지 끌어들여서 “의대생만 불행해 빼액” 한 적은 없는데,...
-
가능성은 작다지만
-
그냥 끝까지 다 볼껄... 줸장
-
자취하기가 진짜 ㅈ같은 저주받은 위치임ㅋㅋㅋㅋㅋ 옆동네 아주대는 광교에 있어서 좀...
-
입시판을 뜨라는 계시
-
92 92 1 96 99 이렇게 나오면 어디즈음 간다고 보시나요
-
유대종 쌤 숏츠 다 봤는데 재밌어보였음.
-
이제 올해 1/10 남았어요. 36일 2시간 뒤에 새해...
-
고정외를 내놓아라 추추추추추합이라도...
-
옵치할래 5
?
-
무한 엔수 박으시나요?
-
늦게 개강하시네ㅠ
-
6월 영어 원점수 85 9월 영어 원점수 85 수능 영어 원점수 85(듣기 -3)...
-
2026수능을 대비하며 한완수를 하려고 마음먹었습니다 수1 수2 파트 1 2를 꼭...
-
뱃지 얻는법 좀 0
대학 빼고 다른 뱃지는 어케 얻음?
-
엘리베이터 타다가 틈에 빠질뻔;
애초에 명제를 생각해낸 논리부터 고려하셔야 될 거 같아요. ' 00에서 0보다 클 때, f(a)/a>f(b)/b이면 f(x)는 위로 볼록이다'라는 명제를 수식으로 증명하려고 할 수 있지만, 역으로 반례를 찾으면 거짓이 됩니다. 아마 대강의 그림을 그려보시면 반례를 찾으실 수 있을 겁니다. 아니면 적당한 삼차함수를 잡으시고 기울기를 관찰하셔도 됩니다. 즉, 수식으로 참임을 증명할 수 없습니다.
조건이 af(b)/b뿐이라면 반례가 존재합니다. 그런데 실제 저 문제를 풀때 명시된 조건을 가지고 위로 볼록으로 판단해서 푸는 해설말고 다른 해설을 본적이 없어서 질문올린거에요 ㅎㅎ ㅠㅠㅠ물론 여기서 위로 볼록은 (0,1)에서의 위로볼록입니다.
저도 완전한 풀이 올리고 싶은데 수험생인지라 시간이 너무 오래 걸릴 거 같네요 ㅜㅜ(어려운 문제긴 해요 ㅋㅋ), 대신에 포카칩님이 쓰신 '수학영역의 비밀'이라는 책에 이문제에 대한 논리적인 풀이가 있습니다. 아마 해답지 말고 본문 속에 있을 거에요. 주변에 친구 책이나 아니면 서점 가셔서 한번 찾아보시길!!
오오 그렇군요 한번 찾아봐야겠네요 ㅇㅂㅇ
명시된 조건은
다항함수 f(x), f(0)=0 0