역함수 킬러 자작문제입니다.
일대일대응, 역함수 자작 .pdf
안녕하세요. 김지헌T입니다.
정답자가 나와서 해설지 업로드 완료했습니다. 감사합니다.
난이도는 아마 기존 나형 역함수 문제 다 풀어봤으면 접근할 수 있을듯합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜?
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
아무래도 오르비 유저분들이 정시파이터들이 많으니깐 수시를 싫어하는 건 이해함. 근데...
-
단국대 내려치기... 11
현역인데 단국대를 가게 됐어요. 수리논술로 붙어서 뽕에 취해있었는데 글들보니...
-
제가 수능 성적이 33133이고 인문, 생윤 사문이었는데 사문 정법으로 옮겼습니다...
-
얼리버드 기상 0
얼버기
-
머리 좋은데 문과선택하면 자기가 저능아가 아니라는걸 평생 증명하며 살아가야함 3
양아치가 아닌데 문신을 하면 자기가 양아치가 아니라는걸 평생 증명하며 살아가야함
-
발음 어케하는거임 부루꾸라시 부류꾸라시 부료끄라시
-
한양대 점공 0
지금 한양대 산공 110명쯤 지원했고 점공은 35명이 했는데 나머지 안들어온...
-
점공이 2
점수공개의 준말인가여
-
이대로 굳는건가?
-
날씨 넘 춥다 0
으으
-
수의대 희망이긴 합니다만… 건수 생각하면…
-
"깨어나보니 나체 상태"…여성 유흥업소 사장, 수면제 먹이고 전 연인 성폭행 6
[서울경제] 50대 여성이 남성에게 수면제를 투약한 뒤 성폭행한 혐의로 수사를 받고...
-
나도 바이럴함 2
무보수 무지성 김동욱 바이럴 지금 시작합니다
-
분러 2일차 2
-
아니면 사는게 나음?
-
어디가냐
-
진학사 실지원은 다 가짜인거지?
-
난이도 : 쉬움 인원 : [5/10]
-
점수가 너무 남아서 여유로운 신선이거나 무지성 스나라는 이야기다 하지만 점수가 너무...
-
지금 원래 버스 있는데 시간도 안뜨네;; 뭐죠…?
-
나같은 사람 있음? 12
놀줄 모름 ㅠ 술도 개못먹고 게임도 개못하고 춤추고 노래방가고 이런것도...
-
광주 아파트단지 분리수거장서 실탄 발견…경찰 수사(종합) 5
(광주=뉴스1) 최성국 박지현 기자 = 광주 남구의 한 아파트 분리수거장에서 실탄...
-
성대자연vs중대전전 10
성대물리에서 전기전자 복전 vs 중대 전기전자 물리학자쪽 길도 생각하고 있거나...
-
사문지구 0
사문지구를 하려는데 과탐 사탐 모두 허용이 되는 곳이어도 1과/1사 지원가능이...
-
ㅎㅇ 1
-
55퍼 언저리에서 정체됐네
-
얼버기 5일차 0
-
과탐 1,4면 풀었을 때 15분이 남던 그 시절의 폼으로..
-
이건 내용은 없고 서론과 목차만 적어 놓은 파일입니다만, 저 목차에 따라서 내용을...
-
지구 기출보는데 1
지1 왜케 어려워졋나요 올해 17번 당황스럽네
-
원랜 S10 울트라로 갈 생각이였는데 찾아보면 태블릿은 그래도 아이패드라는 말도...
-
대학교 졸업학년 앞두고 휴학해서 중앙약(외 수도권 약대) 목표로 준비하고 있는...
-
우유까지 먹어도 한 끼에 3처넌 거기다가 맛도 잇슴
-
아니 왤캐추움 0
집도 춥네 나가기무섭다
-
강제얼버기 6
토하느라 깸
-
의대 유급 제적 5
본과때 여러번 유급당하면 제적당하나요? 학교마다 다르려나..
-
Ebs 수능개념 어떰뇨 서울런 남아있어서 그냥 메가 들을 수도 있긴 한데 먼가 책이...
-
굿모닝 1
아 물론 자러가는 인사 ㅎㅎ
-
얼버기 4
-
생존자확인 9
-
진학사 질문 3
등수 나오잖아요 칸수랑 그게 마지막날 29등이었는데요 실제 원서접수 마감 직전에...
-
햄버거는 롯데리아임 12
다른 곳에서 세트시킬돈으로 데리버거 세개 겟또 야아아아미
-
다욧해야되는데 3
운동도 약챙겨먹는것도 넘 귀찮음 먹는건 안귀찮음
-
노잼...
26
공통 문제에요??
힌트 필요하면 이 댓글에 대댓 ㄱㄱ
아니 g(x) 정의역이 하나 비는데 어떻게 아래 함수는 연속이죠 ㅠㅠㅠ 그걸 푸는게 핵심인 것 같긴 한데…
역함수의 정의가 원함수의 치역을 정의역으로 하는거 아닌가요?? 지금까지 잘못 알고 있었던..
아녜요 정확합니다. 다만 g(x)가 f의 역함수인지 천천히 생각해보세요!
힌트 ! 힌트 ! 힌트 !
어느정도까지 진도나갔나요??
접근을 못한 거라 부끄러워서 말 못하겠어요 ..ㅠㅠ
f의 치역이 주어져있으면, f의 역함수의 정의역이 주어진건데, g의 정의역이 좀 이상하다고 느껴지면 거기서 첫 단추를 찾으면 될 듯 합니다 !
26맞나요?
g0=-3/4?
g(0)=-3/4가 맞습니다! gamma 값 다시 계산해보실래요..?
아 ㅋㅋㅋㅋㅋ 2b를 23으로봤어요
6평 9평 100점이면 충분하죠 ㅋㅋ 개념 확실히 잘 알고계시네요 감사합니당
3?
평가를 남길만한 실력은 아니긴한데..
역함수 개념과 gfx=x식의 의미를 정확히 알아야 풀리는 것 같아요.
나 조건이 성립할 수 있나 ㅁㅎ르겠네요..ㅠㅠ
성립하지 않는 케이스를 건드린 것일 수 있어요! 다시 앞으로 돌아가서 천천히 관찰해봅시다
아ㅋㅋ고냥 습관적으로 교점3개-->감소함수 설정으로 이어졌네요 계속 세점이 한직선에 있어서 뭐지? 했음
다만, 안되니까 설마 정의역에서 장난친 증가함수인가>> 로 접근했으면 완벽했을듯!
역함수 정의에 칼 꽂는 문제였네요,,, 세 점에서 만난 다는 거에서 구멍이 뚫려야 함을 알려주고, 치역에서 0 제외된 거에서도 구멍이 뚫려야 함을 알려줬네요. 그걸 왜 보자마자 몰랐을까여,,;거기에 합성함수 깨알같이 되어있는데 g가 불연속 점에서 1/8 대칭이어야 한다는 걸 f로 잘 바꾸든지 g로 그냥 풀든지 했어야 하는데 아쉬움이 남네요 좋은 문제 감사합니다:)
한줄평: 정의역 뜻을 제가 잘 몰랐네요 ㅜㅜ
풀어봤는데 제가 좋아하는 문제 스타일이네요 ㅋㅋㅋ 함수의 엄밀한 정의를 이용한 조건 해석와 연속의 정의를 이용한 마지막 줄의 조건까지 아주 좋았습니다!
연의생츄님 혹시 f(x)와 y=x가 하나의 점에서만 만나는 경우를 제외하고 푸신 이유나 방법이 있나요? 저는 해설지처럼 풀었는데 되게 간단하게 나오시네요 ㄷㄷ
다음은 제가 저 풀이를 쓰면서 떠올린 머릿속 생각의 흐름입니다.
1. (나) 조건에 의하여 f=g의 실근이 3개이고 등차수열을 이루고 있습니다. 따라서 세 점은 한 직선 위에 놓여있습니다. 그러므로 f는 감소함수가 아닙니다. 여기에서 f가 증가함수임을 알 수 있습니다.
2. 이 상태에서 x=1에서 정의되지 않은 f의 역함수를 그려보면 f와 f 인버스는 최대 2개 점에서 만남을 알 수 있습니다. g(f(x))=x라는 식에서 g 안에 들어가는 f는 0이 아닙니다. 따라서 실수전체집합에서 정의된 함수 g는 x=0에서 어떤 const.(상수) 값을 가집니다.
3. 위의 생각에 따라 g는 x=!0에서 f 인버스입니다. 만약 f와 f 인버스의 교점이 2개 미만이라면 g(0)=f(0)이라 하더라도 f=g의 교점이 3개 미만이 되어 (나) 조건의 3개 실근 조건을 만족시키지 못합니다. 따라서 f와 f 인버스의 교점은 2개입니다.
4. 이제 위 조건과 g(0)=f(0)이라는 조건. 그리고 마지막 조건에서의 연속 조건에서 나온 극한값과 함숫값의 일치를 이용하여 방정식을 풀면 조건에 맞는 상황의 상수들을 결정하면서 문제가 해결됩니다.
+물어보신 부분은 3번에 답이 있습니다.
그걸 머리로만 하시다니... 대단하시네요
g(f)=x를 모든 실수에서 만족하는데 역함수가 아닐 수 있나요??..
x가 0이 아닐때는 f의 역함수이고, 0일때는 무슨값이어도 되도록 g를 설정합시다!
조건을 잘 읽어보면 g(f)=x라는 식이 실수 전체 집합에서 성립하는 것이 아니라 g가 실수 전체 집합을 정의역으로 가짐을 알 수 있습니다.
앗 g(f)=x는 실수 전체의 집합에서 성립합니다만, f의 치역이 0을 포함하지않아서 g(0)이 자유롭게 정의될 수 있습니다.
f의 정의역이 1이 아닌 실수전체집합이라 f(1)값이 정의될 수가 없는데 해당 식이 실수전체집합에서 성립할 수가 없지 않나요?
아 아 아 그 뜻이었네요 제가 오해했습니다.
츄님 설명이 맞습니다:)
ㄷㄷㄷ. 진짜 연의 가실듯.....
정말 어지럽네요 ㅋㅋㅋ 문제 잘 만든 거 같아서 풀이 보니 식 계산 풀이더군요. 그래서 그래프 직관 풀려고 하는데 여러분 이 문제는 식 풀이가 빠릅니다. 그래프 써도 어느 정도 특히 증가함수 감소함수 부분 쪽에서 식 풀이를 쓰면 될 겁니다.
수능이였으면 무조건 x=0일때 근을 넣어서 풀었을 거 같은데 확실히 푸는 거랑 설명하는 거는 많이 다르다는 것을 알게 되었네요
풀이에서 x 가 1로 갈때 f(x) 가 0 으로 가야하는 이유를 모르겠습니다. 설명해 주시면 감사 하겠습니다. .
f의 역함수가 존재하고 치역이 0이 아닌 실수 전체의 집합이기 때문에 x=1 좌우에서 f의 증감여부는 같고 lim x->1 f(x) = 0입니다.
감사합니다.