열린구간의 증가함수에서 최댓값이 존재하지 않음이 이해가 안가는데....
게시글 주소: https://games.orbi.kr/0004283344
lim(x->2-0) 을 취하면 나오는 좌극한'값'이 곧 최댓값 아닌가요? 최댓'값'이 없다고 하는 이유가 무엇인지 궁금합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다들 잘자 10
-
10시간만해도 집중력 바닥나는대
-
기하를 공통으로 너어야댐 왜케 많이 쓰임 이거
-
하 젠장
-
어마금 코믹스 전권 어과초 코믹스 전권 어마금 라노벨 전권 들고 가면 무적일듯
-
다 잘 먹고 잘 살더라....물론 지만 모르고 주변에 스트레스 팍팍 주면서
-
카카오 주식 사야 되는데 피곤하게
-
여대 제외하고 인서울 공대 가능한가요..? 지구를 너무 망쳐서ㅜㅜ 안되면 가천대는...
-
국어 : 유일하게 어떻게 해야할지 감이 안 오는 과목...노베고 고2 국어 모고...
-
이채영 이쁨 4
고트야
-
나 일본어 못 함 13
1도 못 읽음 근데 저거 한국에 정발 안 해서 그냥 일본갔을때 사옴
-
제 성격변천사 7
현역 재수 삼수 옛날게시물보고 오해하실까봐 정리함
-
ㅇㅇ
-
좋은 유전자는 좋은 유전자끼리만 만나서 그게 계속 반복되다 보니 사기캐들이 많이 보이는 거 같음..
-
전글 사진..
-
님은 정말 의대 가길 잘하신거같아요 라고 치려다 참음..
-
취미가 독서임 18
네..
-
내 애인이 2
뭐가 더 극혐임?
-
오르비에 스포츠과학부 실기러가 과연 있을지? 저날 영하 10도만 안됐으면 좋겠다
-
현생에서 알파메일피메일이면서 여기서 막....진짜 배신감 들어서 울었음
-
노래부른거 ㅇㅈ 4
대충링크
-
거의 확정인건가요?
-
맨날 오르비 켜면 항상 같이 떠있었는데 거긴 뭔가 다른 세계 같았음
-
대성이 오히려 예전에 비해 잘생겨진 듯ㅇㅇ…
-
대학 반영 과목 0
인서울 하위권 대학, 경기권 어느 대학으 잘본 두 영역을 반영하거나 탐구 하나만...
-
그걸로 돈벌면 높은 기분으로 에버랜드에 가고싶어
-
모썩철썩!
-
바보같은 걱정도
-
헤헤
-
동생 이번 수능 언매 미적 영어 생1 지1이고 제 생각엔 한양의 소신 정도뜰거...
-
확통 1년 더 하면 ㄹㅇ 다 맞을 자신도 있음 미적 84 공통 1틀이었는데 미적...
-
오타쿠들이 화학을 뭔가 잘함 여캐이름 외우던 재능으로 외우는것일까
-
우울글주의) 47
나사실게이아님 그냥애정결핍임 오르비하기전에는조울증갤러리했었음...
-
바꿀때가됐나 0
프사를
-
화 미 세 지 72 69 35 26 영어 2
-
내신 출제기간 0
보통 선생님들학교시험문제언제부터언제까지내시나요.갑자기 궁금해졌네요
-
2등급따리가 해도 되나요?
-
240628의 30번 버전인 것 같아서 개빡세겠다 생각했었어요
-
제발다시는보지맙시다
-
등급이 하나씩은 내려가는 꿈꿨어요 ㅠㅠㅠ 마킹 잘했겠죠 국어+수학 11번~15번은...
-
님들 높공기준이 6
전화기컴신 인가요?
-
오늘은 포기해야되나
-
고민 들어드립니다. 31
비밀 보장 ! 함께 고민해요. 쪽지 환영.
-
ㅇㅇ?
-
와 근데 ㅇㅈ 어케 함 14
방금 잠깐 ㅇㅈ해볼까 생각해봤는데 지인한테 걍 바로 걸릴 거 같음 ㅋㅋㅋㅋ 어떤...
-
맨날맨날 새벽까지 공부하고잇으니까 더빡침 메디컬이나 로스쿨생이면 이해라도가겟음 아오
-
국어 비문학 연습할 때 관련 생윤 문제 넣어놔도 될거같음. 재미 ㅈ댐 ㅋㅋ
-
이거 때메 최저 못 맞춘듯.. 하..
-
여자 5
여자들은 왜 자기가 이쁘다고 생각하지? 자존감이 너무 높아
그극한값이 최대값의 근접한값이지 최대값은 아니죠
극한값을 적용하려면 우극한과 좌극한이 존재하고 같은 경우로 알고있는데 구간이 정해진함수는 그 특정구간에서만 성립하니까.. 어느 한 개의 조건이라도 없으면 성립안돼는거아닐까요?
2-0에서의 극한값이 최대값이 되지않는 이유는 최대값을 정확히 확정지을 수 없기 때문이죠. 엄밀히 따지면 f(2-0)=20-0이잖아요. 20에 무한히 가까운 수이지 정확히 20이 아니란 거죠 누구는 19.9 또 누구는 19.99 이렇게 생각할 수 있다는 것으로 이해하면 편합니다. 수학적으로 말하면 최대값은 최대값이 되는 함수값이 존재, 즉 저 그래프에서 보았을 때 f(2)가 존재해야합니다. 근데 f(2)는 존재하지 않거든요. 그래서 최대값이 없다가 되는 겁니다. 너무 말이 어려웠나요? ㅠㅠ
최댓값이란 결국엔 함수값인데, 함수값은 2에서 정의되어있지 않을 뿐더러 2-0 으로 다가간다 하더라도 그보다 크고 2보다 작은 수는 얼마든지 존재하기 때문에 (ex: 1.99...9 <<9가 n개 1.99...9 <<9가 n+1개)
이게 무한히 가더라도 그 수보다 더 크고 2보다 작은 수가 존재하기 때문에 이 문제에서 최댓값은 부정입니다.
극한은 20에 무한이 가까워지고 있다는 뜻이죠. 그러니까 저기서 극한은 '20에 가까워 지고 있는 상태'를 의미하고 극한값은20 그러나 최댓값, 그러니까 함숫값은 존재하지 않잖아요 x->2이지만 x=2인 것은 아니므로 저 구간에서 f(2)값도 정의할 수 없죠.
대학교땐 최소상계 최대하계라고 배우는데 고등학교땐 "값"이라서 저건 없다고 보는겁니다
포카칩님 혹시 수비언제나오는지 알수있을까요??
현재 검토를하고있습니다 검토 끝나는대로 판매 예정입니다 그래도 앞으로 2주이상 걸릴듯 해요
그렇군요 매번 감사합니다
잠깐만요. 그러면 구간이 (-무한,무한)인 경우에서의 x를 발산시키는 극한값 역시 최대 최솟값이 될 수 없는 건가요?
네