[SOS]문돌이 빡모 문제 해설좀 부탁드려요 ㅠㅠ
게시글 주소: https://games.orbi.kr/0003810506
총 5문제 부탁드려요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://orbi.kr/00070203351#sidebar-left 유저들 좀 많이 보게 ㄱㄱ
-
왜 할아버지가 돌아가신걸 눈으로 봐도 장난을 칠수 있는건지 궁금하다.
-
24국어점수 다시는 못받을 거 같은데
-
열심히는 아니지만 그래도 논술 준비하고 있는데.. 물리 2 되는 순간 그냥 노는 게...
-
올해 6월, 수능 성적인데 재수하면 성적 올릴 수 있을까요...? 반수하면 1학기...
-
눈앞에서 2
사람 넘어져서 119타고 가버리네..미친 빙판길이네요
-
1.2년만에 입시돌아와서 반수하러온 형 미적하지말고 확통하라해서 이번 수능 확통만...
-
교육과정 바뀌기 전 마지막 수능인데
-
태어나길 그렇게 태어나서 평생 일만 하고 살 운명인듯 놀고 싶은 마음은 진작...
-
오늘 산거 2
-
겜 종나오래걸리겠네
-
요즘기조에 잘맞는 쌤이라 생각이들어 수강하려하는데 미적분선택자 분들 중에 담금질까지...
-
부엉부엉부엉이 9
노래를한다
-
진짜 둘다 쉬는시간마다 나가네 진짜 숨못쉬겠음 ㅠ
-
ㅎ하 미치겠다 늙어서 뇌가 굳은건가
-
덕코 사요 4
찐으로 삽니다
-
조교 지원 1
인강 쌤 조교 지원하려고하는데 조교 지원서 무조건 구체적으로 써야하는건가요??
-
.
-
한수 모고 0
한수 프리시즌 모의고사 잇길래 풀어보려는데 ㄱㅊ아요? 살짝 아깝나 ㅜ
-
어제 맥주 16병 먹음 :)
-
월루 2
월급루팡이라는뜻
-
일단 역이없음 지하철역,기차역 하나도 없음 택시 잡기가 극악임,카카오택시 어플돌려도...
-
제발 확통하라며 두들겨 팼을 것
-
사탐은 없네요
-
제목 ㅈㅅ 저는 확미기를 다풀어본지 통합수능 3년차에요 쉬울수록 유리함 내가 이거...
-
43223으로 국숭세단이 가능함? 80인데 왤케 쫄림
-
+1을...
-
하나뿐인 사랑
-
25 수능 수학 20번 문제에 대해 헷갈리는 것이 있는데 알려주실 분ㅠㅠ 문제...
-
아오 드디어 1
글 쓸 수 있네 반갑습니다 뉴?비입니다
-
컷 더 올라가면 어캄 혀깨물고 죽으면댐?
-
1컷이 많이 높네ㅜㅜㅜㅜㅜㅜ
-
재수 망하고 이과였데 외대 어문옴 학교에 적응 못함 학교도 마음에 안들고...
-
다른 과탐은 답이 없어. 유일한 길은 고정 50이 쉬운 물리1 뿐이야
-
국수탐 평균 백분위 99+ 영어 1등급이 상위 1%라는데 이정도면 실제론 누백...
-
심지어 잘만듦 눈사람 전시회 온줄
-
그럼 살아있는건 노동이고 고통이라는 걸까.
-
생명 에효 1
생명 41 2컷은 정녕 물건너간 것인가... 역시 평가원은 엄격하셔
-
화작 98인데 3
백분위 98은뜸?.....
-
이게 컷 46은 와..ㅋㅋ 물2는 1컷 50도 가능성 생각했어서 전혀 충격 없음 오히려 꿀과목인듯
-
과거 일이기에 기억이 왜곡됐을 수는 있음 23 수능 화작 얘상 1컷 93 실제 1컷...
-
언매 97 3
백분위 99는 나오겠죠?
-
문제 ㄹㅇ 극악으로 내야 변별 가능할 듯
-
물1지1 같이 가자
-
내 대학이 제일 비상이다 화작 98인데 백분위 97 뜨진 않겠죠?
-
사탐으로 공대갈수있는건 ok 수학은 미적을 계속 해야되나요 아니면 확통 해도...
-
수학 4-5등급 빳붕인데 일년쉬었음 수학 신발끈 + 이미지 풀커리 vs 노배...
-
제발요
-
유치원때부터 영어유치원 경쟁 초등학교때부터 학원 레벨테스트, 특목고 입시로 경쟁...
30번 확률문제는 직접 수형도 그리면서 하셔야 됩니다. 동전을 a b c로 놓았을때 첫번째 시행을 a로했을때 14가지가 나옵니다. 거기에 각 경우를 고려하면 경우의수는 3x2x14가 됩니다.
21번 삼차함수 나오는 거는 그래프개형의 여러 가지 경우를 잘 고려해야됩니다. ㄷ은 솔직히 말로 풀어 설명하기가 어렵네요. 2f(1)을 직사각형의 넓이로 보셔야합니다. 3-1(밑변)xf(1)(높이)라는걸 고려해서 풀어보세요.
나머지는 저도 아직 못풀어봤거나 남한테 설명하기엔 이해가 완전하지 못해서..... 부족하지만 조금이라도 도움됬으면 좋겠네요
아니에요....도움 많이 됬어요!! 귀한시간 내주셔서 정말 감사합니다!!
우선 맨 위의 27번, 맨 아래의 20번을 제외한 나머지는 한 번씩 풀어봤는데요,
8번 행렬문제의 ㄷ선지는 귀납법을 사용해보세요. n=1일 때, (AB)^1이 M에 속하므로 AB=E=BA가 성립하죠?
다음으로 n=k일 때 ㄷ이 성립한다고 가정하고 n=k+1일 때를 따져봅시다.
n=k+1일 때, 좌변은 (AB) x (AB)^k와 같이 정리할 수 있고 우변은 B x (AB)^k x A와 같이 정리할 수 있습니다.
n=1일 때 AB=E=BA임을 알았으니까 (AB)^k=E로 놓으면 AB=BA가 나옵니다.
30번 확률문제는 사실 확률보다 경우의 수를 중점적으로 다룬 것 같네요.
세 개의 동전을 (H, H, H)와 같이 일종의 순서쌍으로 두세요.
그리고 수형도를 그리시면 되는데, 수형도를 그리시다보면 일정한 규칙성을 보고 간소화해서 푸실 수 있을 겁니다.
결과적으로, 6회째 (H, H,H)가 되는 경우의 수는 3x{2x(7x2)}]=84가 나옵니다.
21번 미적분문제는 y=(x-1)(x-3)(x-a) (단 a>3) 그래프를 그려보시면 ㄱ, ㄷ 둘 다 해결하실 수 있을 겁니다.
개인적으로, 반례가 되는 함수를 찾을 때에는 x좌표의 범위를 활용하면 효과적이더라구요.
좋은 팁 알려주시고ㅠㅠ귀한시간 내주셔서 감사합니다~~
27번은 아래 FA14님이 푸는방법을 알려드렸으니 차치하고, 맨 마지막 20번 문제도 풀어보았는데요,
ㄱ선지는 로그함수와 분수함수에 각각 √2와 2를 대입한 함수값을 비교하면서 답을 찾으셨을거라 사료됩니다.
ㄴ선지부터가 중요한데요, 글쓴 분께서는 그래프로 푸시려고 한 것 같네요.하지만 대개 이와 같이 좌표를
활용하지 않을 경우, 답에 오류를 포함할 가능성이 높습니다. 좌표와 식이 주어져있다면 최대한 활용하세요.
주어진 조건을 통해 f(2) = log a (밑 2는 타자로 못치니까 생략해서 쓸게요) = 1/a임을 알아내셨을 겁니다,
따라서 -1/a = -log a를 얻어낼 수 있고 좌변의 f(x)의 역함수에 -1/a 대신 -log a를 대입하면 f(-1/a) = 2^-loga를
얻어낼 수 있습니다. 로그의 성질에 의해 2^-loga = a^-1이 되므로 ㄴ선지가 맞는 선지임을 알 수 있습니다.
ㄷ선지의 경우는 조금 더 복잡한데요, log b(여기서도 밑인 2는 생략해서 쓸게요) = -b, log a = 1/a를 이용합니다.
log a - log b = log a/b = 1/a + b이므로 f(a/b) = f(2^1/a+b) = 1/a + b가 나오는데요,
ㄱ선지를 통해 얻은 1/2 < 1/a < 1/√2를이용하면 1/a + b < √2가 되기 위해서 b는 √2/2보다 작아야함을 알 수 있습니다.
y=f(√2/2)와 -√2/2를 비교해보시면 f(√2/2)가 -√2/2보다 크다는 결과를 얻으실텐데요(그래프 비교), 이를 통해
b가 √2/2보다 작음을 증명해낼 수 있습니다. 따라서 1/a + b
복사해서 얼른 다시 풀어볼게요!! 정말 감사합니다!!
맨 위에 27번은 (1/2)^c+1 이것은 1/2 이 밑인 지수함수를 -1만큼 평행이동한 것이기도 하고, 평행이동 하기전에 같은 x값에 대해서 y 값이 1/2만큼 줄어든다는 것을 의미합니다 따라서 1/2만큼 y값이 줄어들어들어도 그 해의 범위가 일치되려면 log 함수의 밑이 제곱이 되어야 합니다 그런데 2, 3의 제곱인 4,9일경우에는 옆에 경계값을 함숫값으로 가지므로 이를 제외한 나머지 수 5,6,7,8 가 되어야 하기에 답이 26이 됩니다.
삼차함수옆에 있는 삼각형 넓이 계산문제 (20번)는 한 문자에 관해 정리하고 나서 제곱을 벗겨낼 때 부호에 유의하면서 계산해주시면 됩니다.
ㅠㅠ문돌이 구제해주셔서 감사합니다 ㅠㅠ복받으실거에요~~님풀이대로 한번 다시풀어볼게요!!