모르는 사람 은근 많은 n각형 내각의 합이 180(n-2)인 이유
예전 영과고 자소서 준비할 때 썼던 내용인데 모르는 친구들 많길래 써봅니다 재미로 봐주세여~
크게 3각형을 먼저 증명하고 4,5,++각형 증명하는 식으로 진행됩니다
i) 3각형 내각 합이 180
이런 모양의 삼각형 ABC가 있다고 해봅시다.
여기서 AB와 평행하고 C를 지나는 선을 그어봅시다. (C가 AB위에 있지 않으니 항상 일치하지 않고 존재하는 선입니다.)
그러면 엇각의 성질에 의해서(엇각은 동위각과 맞꼭지각으로 증명됩니다.)
삼각형의 세 내각이 한 직선 위에 모이게 되죠. 고로 삼각형의 내각의 합은 평각과 같은 180도가 됩니다.
ii) 4,5,6... 각형 180(n-2)
삼각형 증명을 보고 모르셨던 분들도 어느정도 감이 잡히셨을거 같네여
증명 방법이야 여럿이 있을 수 있겠지만 가장 인상 깊었던 증명 방법을 소개해드리겠습니다.
우선 n각형의 내부에 점을 하나 찍습니다. (단, n=>4)
그리고 n각형의 꼭짓점과 선분으로 잇습니다.
보이시나요?
n각형의 모서리와 새로 그어준 선분들이 모서리의 개수만큼 n개의 삼각형을 만듭니다.
이는 4,5,6...100각형이 되어도 항상 성립하죠.
이때 삼각형 내부 각의 합은 180임이 i에서 증명되었으니, n각형 내부의 점과 이루게 되는 모든 삼각형의 각의 크기의 합은 180*n이 됩니다.
이해가 가지 않으실까봐 4각형을 예시로 보여드리면
위 그림에서 그려진 모든 삼각형의 내각의 합 = 알파 + 베타 + 감마 + 델타 + k = 180*4가 되죠?
여기서 다각형 내각의 합만을 구하기 위해 180*4에서 k를 빼주게 되면, k는 항상 360도이므로
180*4-360이라는 식이 유도되게 됩니다.
이를 n각형에 적용시켜 볼까요?
180n(180도인 삼각형 n개) - 360(항상 중싱에 모이는 각 합은 360) = 180(n-2)
우리가 중학교 때 암기했던 공식이 나오게 됩니다.
분명히 간단한 내용인데도 설명하려니 힘드네요,,
그냥 재밌게 읽어 주시고
가끔씩 친구들한테 자랑할 기회 생기면 우려먹기 좋습니다~ㅎㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
자기는 남이 레트로트 데워서 판다고 욕하면서 나는 직접 재료 사서 조리한다고...
-
더 해라
-
영어공부중 1
티원 조마쉬 입장문 읽는중인데 그냥 상황이 ㅈㄴ 이상하네 뭐냐
-
그냥 그런생각이 듬
-
얼버기 3
-
가자가자
-
정말 오랜만에 수능판에 들어온 20대 중반입니다. 이번에 과탐 화생을 보고 답이...
-
작년기준으로 보통 몇월정도 되야 업로드가 시작되나요?
-
ㅜㅜ 주작러는 박제해야지...
-
우선 시작하기 전에 한마디 입시커뮤 주작의 역사는 반복된다. 입시끝내기님...
-
아기 현역 달린다
-
기상 완료 오늘도 ㅍㅇㅌ
-
ㅎㅇ 2
기상완료
-
얼버기 2
-
잠 다깸 2
어제너무 일찍잣나
-
무빙 답답해서 숏 사고 자고일어났는데 이게 되네
-
수면 패턴 0
11시에 자서 지금 깨는거 정상인가요?? 너무 일찍 깨는 거 같은데..
-
안잔다 0
숏치길 잘 했다 진짜 킬마이셀프 해버릴뻔함 이번 숏끝나면 건실하게 살아야겠다 진짜
-
미적 84 2
공 22 미 28 29 30 틀렸는데 백분위 몇 정도 나오려나 1은 안 되겠죠? ㅠ
-
개억까다 진짜
-
이게 말이되냐
-
꿀과목 아닌것같음 ㅅㅂ 배운거에서 안나옴
-
이번수능기준 4등급, 듣기는 항상 다맞는데 18~20, 일치불일치, 43~45...
-
전문대갈건데 7
솔직히 나 예쁘고 돈도 많이 번다는데 하 …. 왜 이 학벌만… 수시 버리지말걸 ㅋ...
-
2일연속 밤새기 1
아침에 몇시간 쪽잠자긴 했는데 힘들다
-
세지친사람 있나 11
요번수능뭔가 이기상 저격같은데...
-
ㅈㄱㄴ 특히 국어
-
ㅈㄱㄴ
-
사람은왜코를골까
-
어문계열정도는 가고싶은데 가능할까요 정법 3 뜨면 아예 불가인가요..
-
숏치고 잔다 1
제발 공매도 성님들 한번만 도와주이소 나한테 뜯어간 돈가지고 공매도 치는거 아니오...
-
언매기하물2경제 18
언매기하물2경제 에반가요? 현역 화작기하물1물2했었고 화작4틀1등급놓침 -> 언매로...
-
지금 메가 대성 31 이투스 29
-
근데 만약 메가 혹은 대성 수학 컷이 맞았을 경우에는 1
왜 그렇게 나오나 생각을 잠깐 해봤는데 전년도와의 가장 큰 차이점은 의대 정원...
-
ㅋㅋㅋㅋ
-
알바 0
추천좀여
-
모두가 88을 외칠때 저는 조용히 84~85로 외치겠습니다. 사실 다른 분들이...
-
작수 가채점 끝난 저녁날, 받아든 가채점 결과는 언미영물지 13323. 목표에 한참...
-
인간 미쳐버리기 만드네 그냥..
-
뭔가 수위좀 있는거 같아서 군대에서 보기 좀 그럴듯
-
사람은 진짜 없는 느낌
-
지금부터 서로 죽여라?
-
뭐냐 에반게리온급이네 ㅅㅂ이
-
올해 150일 이상 4시간씩 탐구(생윤사문)에 박았는데 32떠서 좌절감을 맛보고...
-
창팝 밴드 커버 준비했는데 놀러와주시면 감사드리겠습니다 ㅋㅋㅋ 서울특별시 서대문구...
-
.
-
자이스토리 3
자이스토리 고3 수학 사려는데 수능 년도 바뀔 때 마다 문제 차이가 큰가요..?
-
왜 31만원이 21만원이 되었는지 설명해볼래
-
자니? 13
오목사각형은용
오목다각형도 볼록 다각형의 집합으로 분할하는 걸로 알고 있는데, 오목은 너무 광범위 해서 안 찾아 봤습니당~ 혹시 논증기하 잘 하시면 자료 부탁드려요~
좋아요와 팔로
감삼돠~ㅎㅎ
ㅎ 친구들한테 자랑하세요!