행렬 진위 판정 문제
게시글 주소: https://orbi.kr/0003378958
A B 는 이차정사각행렬 이며 (AB)의 제곱 = A 의제곱곱하기B의 제곱 이고 A의 역행렬이 존재할때
B*A 역행렬= A역행렬*B 이다
좀 풀어주세여 ~ 맞으면 맞고 틀리면 왜 틀린지 이유랑 풀이과정도 적어주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그런 의미에서 ✨명반 홍보✨
-
ㅇㅈ 9
전에 보신분들은 모른척해주세요??
-
보카로 들으면서 n제 풀면 재밌음
-
어제는 이름에게 듣다가 졸라 슬퍼져서 갖자기 눈물이 남요… 저번주에는 도경수 노래 듣다가 울었어요…
-
ㅇㅇ 와서 확인한다 맞팔은 안해준다
-
할거 ㅈㄴ 많다 5
컨텐츠 ㅈㄴ 쌓엿다
-
국어랑 수학 풀때 들음
-
메가 구독패스 0
다시 팔까요..? 미루다 못삼,..ㅠ
-
ㅇㅈ메타임? 6
잘있어..
-
지가 듣고 싶은 말 들으려고 몸비트는게 너무 괘씸함 가뜩이나 입시경쟁에서 한번씩...
-
이런거 0->1까진 31
눈풀로 적분 연습해보셈
-
겉으로는 세게 말하려고 애쓰지만 본심은 그게 아니라는걸
-
겠냐고 ㅋㅋㅋ
-
왤케잘품ㄷㄷ 8
계산으로 밀수있는 문제면 거의 다 잘푸는듯?
-
현역 질받 16
새벽이니 질문해주세뇨
-
현역이고 생윤 개념은 2회독했고 윤사는 2학년때 내신으로만하고 아직 제대로는...
-
ㄹㅇ?
-
부엉이어디갔어
-
작수는 화작 아다리로 4등급 컷 받았었능데 이번 3덮 70분쓰고 독서 두개 문학...
-
ㅈㄱㄴ, 내년이나 교육과정 바뀌었을때 들가보고 싶
-
2022년 7월 학력평가 생명과학2 해설강의 켰다가 깜짝 놀랐었음
-
오르비마크서버 3
진짜재밋겟다 현실에서는 친구 없어서 못 함.. 오르비언들이랑 하고싶어
-
이젠 제발 좀 하자... 전공이 있든 없든 2주는 해야지...
-
오르비언 사귀는 법 11
나는 안써먹어봄 1.오르비를 켠다 2.인증이 예쁜 여르비/ 잘생긴 남르비를 골라...
-
근데 면허도 없고 차도없고 차살돈은 당연히 없음 ㅋ.ㅋ
-
실력이 그러지를 못하니까 미치겠네 아오
-
본인 연애보다 4
금테 다는게 더 빠를듯요...ㅠ
-
내 인생에서 수학만큼은 극복하고 싶어 하
-
쌤 예뻐보여서 아무 강의 들어가서 강의 스타일좀 보려고 저 강의 14강 켰는데...
-
자러감 며칠~한달이따 재밋는썰들 뒤지게많이 갖고올게 딱대라
-
오르비 첫글 0
킬캠 80점이면 백분위 몇정도 가능할까요? 좋아요 0, 댓글 0
-
06vs 07 24
공부 어느쪽이 좀 더 치는거같음뇨?
-
안경 잘바꾸신듯
-
이투스 정승제들으려고 해서 개때잡을 구매하였는데 아는 지인이 한완수 2025를...
-
당장의 감정에 너무 휩쓸리지 않아도 됩니다
-
나 매웠구나? 3
순해진거임 이게
-
이런거 알아도 되는 사람만 남았나 봄 걍 옆에서 하기도함
-
수2 적분 문제 1
1. 188 2. 191 3. 194 4. 197 5. 200
-
오르비에서 친구사귀고 남친/여친사귀는거 나쁘지않음 생각보다 외모도 다들 준수함
-
명작 수학문제 16
진짜 명작임 가장 빨리 풀어서 본인 풀이 올리면 오천덕드림ㅋㅋ
-
낮엔 껌딱지마냥 따라다니고 밤에는 방문 열어달라고 문 벅벅 긁음 문 열어주고...
-
심지어 그중 한번만 친구임
-
님들 그거 앎? 2
소화 안됐는데 자야될때는 왼쪽으로 누우면 배 덜불편함
-
내 첫글은 4
-
전부다 계삭하고 손필기 다 지워야지 시머인재가 고소때리기 전에 예전엔 개별적으로...
-
님들한테 얘기함 0
나 오르비 초창기때 여기서 이름털린적있음
A약분해보면 (AB-BA)B=O ----> AB=BA ?? 를 진위판정하는 문제와 동치입니다.
이는 거짓입니다. B=(0 1 // 0 0), A=(1 0 // 0 0) 생각해보시면 됩니다.
이미 님 말씀대로 A 의 역행렬은 존재해요
사실 학교에서 처음풀때 (AB)의 제곱 = A 의제곱곱하기B의 제곱 -->는 AB=BA
라고 생각하고 풀었고 제 친구들도 그렇게 풀어서 답이 잘못된줄 알았는데,
이게 syzy님이 동치라고 제시한걸로 이해하니까 정말 쉽게 이해되었네요
고마워요 ~~
A =( 0 1 / 1 0 ) B= (1 0 / 1 0) 반례요 틀렸어용.
문제를 보자마자 반례가 떠오르는 경지까진 안가서 그런데,..
반례 말고 다른 방법은 없나요?
더군다나 시험에선 떨려서
반례로 풀어야지 조차도 생각이 안나는데ㅠㅠ
syzy님 반례는 A가 역행렬이 없어서 안될것같아요.
아 그러네요
ㅋㅋㅋㅋㅋ참인거같은데용 첫번째 조건 때문에 교환법칙이 성립한다고 할때 그 문제에 양쪽에 A를곱하면 A곱B곱A역행렬=B이고 교환법칙이 성립하니까 A랑B랑
자리바꾸면 B곱A곱A역행렬이니까 B만 남으므로 성립
제바류님도 제가 처음풀때 한 실수를 했네요 ㅠㅠ
위의 첫번째 조건은 교환법칙이 성립한다는게 아니에요 반례가 있죠
그리고 이것을 전제로 풀어서 답이 맞다고 나온거니까
잘못 푼거에요
참고로 (AB)의 제곱 = A 의제곱곱하기B의 제곱 -->AB=BA 이다
의 반례는 A= (1 0/ 00 ) B=( 0 0 / 1 0)
이에요
(AB-BA)B=O --> AB-BA=O ? 가 참일지 거짓일지 따지는 것인데,
일반적으로 CD=O 이라고 해서 C=O는 아니니까 아마 위 명제도 거짓이 아닐까 일단 의심을 합니다.
그러면 (AB-BA)B=O 이고, AB-BA=O는 아닌 예를 찾기 위해, B를 최대한 O에 가까운 걸로 놓아봅니다. (그래야 좀 더 유리하니까..)
B = (0 1 // 0 0)으로 놓고, A = (a b // c d) 로 두시면
AB-BA = (-c a-d // 0 c) 이고
(AB-BA)B = (0 -c // 0 0) 인 것을 금방 계산할 수 있습니다.
따라서, c=0으로 두시면서 a-d =0이 아니게 하면 됩니다. 즉,
A = (a b // 0 d) , B = (0 1 // 0 0)형태면 반례입니다. (단, A의 역행렬이 존재한다는 조건 때문에, a,d 둘 다 0 이 안 되는 범위에서 고르면 되겠군요.)
대단하네요 이런생각을!!! ㅋㅋㅋ
제가 본것중 젤 논리적인 반례 찾기인듯 ㅋㅋ
감사합니다~~
ㅎㅎ 고마워요. 위에 막 실수 해놓고 그래서 죄송해요~