2020학년도 수능 수학 가형 30번질문
일단 해설지의 방법은 이해하였음을 미리
말씀 드립니다.
제가 궁금한 점이 몇가지 있어서 질문드리오니
수학 고수분들이 답변해주시길 바랍니다
이 문제입니다만
상황이 이렇게,
x에 대한 지수함수와 로그함수가 t라는 상수에 따라
x축에 대한 평행이동 및, 몇배로 이루어진 상황에서
"주어진 t값에 대한 a만큼의 평행이동으로 접점을 한개 만들어라"라고 이해하였습니다.
즉, x변수(함수) , t 상수 , a는 t에 대한 변수
여기서 다들 아시다시피,
접점에서의 함숫값과 기울기가 같다로 식을 두개 세웁니다. 접점(k)라 두자.
이후로, 식을 미분하여 튀어나온 a의 속미분을 활용하여 f프라임t를 구하고, k는 위아래에 존재하는 식을 잘 연립하여, 소거하면 문제의 답이 나옴을 알 수 있습니다만,
저는 여기서.
ㄴ 식에 ln을 취하여 a즉 f(t)를 직접 구하고자 합니다.
이 식을 a=t~~에 대하여 정리하여 표현한 뒤,
k를 잘 소거하면( 접점의 좌표, 상수이므로)
f프라임 t를 구할 수 있을거라 생각 하였습니다.
계산 실수 발견으로 밑에 사진으로 대체
그래서 식을 정리하였습니다만, 여기서
질문이 두 개 있습니다.
1. k는 t에 대한 함수인가? 그냥 상수인것인가
=>미분할때 k를 어떻게 처리할지가 조금 헷갈립니다.
2. k의 값을 어떻게 제거할까?
k의 좌표를 정확히 알면 좋겠지만,
이 관계식 밖에 모르므로, 어떻게 접근해야 할 지 막혀 버렸습니다.
조언 및 오류를 찾아주실 분을 찾습니다.
도와주세요 수학고수님들..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
스플랑크니조마이 :) 슈퍼초대박날거야 :)
-
ㅈㄱㄴ
-
연애를못해서 안에서썩어문드러지는중임 근데 나를 젛아해주는여자가엊어
-
안 자는 사람? 4
-
ㅈㄱㄴ 일단 스카이는 다 보고
-
05형님들이 수능보고나서 11월말쯤에 같은 반애들끼리 이제 정시 시작이라고 같이...
-
수시 서울대학교 의예과 학생부종합전형 합격 연세대학교 의예과 논술전형 합격...
-
수능끝난날부터 아침저녁 신경안쓰고 무지성으로 깰때까지 수면, 배고플때 밥,...
-
따뜻한 물에 삶아지는중 노곤노곤
-
효용이 없다 이런걸 말하려는건 아니고 읽는걸 잘 못하는 사람이 읽는법을 읽어서...
-
인강 완전 대체로 독학서느낌? 같긴한데
-
사탐신규커리 0
보통 언제나옴?? 정법이랑 생윤 할 거 같음
-
뭔가 좀 아쉽네 지구1
-
무지성 토익 신청함 14
걍 가면 몇 점 나옴?
-
아예 균형을 잃는 것도 하나의 방법일 수 있음. 균형을 잃고 거기서 추진력을 얻어서...
-
우울증 학교부적응 내신망함 자퇴욕구MAX 수능노베 이거 수능 뽀록나서 대학 잘가는게...
-
저들이 나와같은 인간이라는게 믿기지않는 압도적으로 똑똑하거나 성실하거나 아름답거나...
-
흐어
-
비문학 독해 연습 드가자...
-
가슴 한 켠에 증오 대신 문학을 담고 오늘의 끼니보다 내일의 희망을 노래하는 사람이 되고 싶어요
-
국어 공통 김승리 풀 커리 언매 유대종 수학 예체능이라 X 영어 션티 or 이명학...
-
남초 입시커뮤에 왜 여시충 아줌마가 와서 여대관련 이슈만 보이면 아득바득 달려와서...
-
앞으로 데이터사이언스, 데이터분석 관련 직군이 더욱 늘어날거라 미래에 배팅한다고...
-
수능에선 걍 잘풀고 답맞추면 장땡이지 수험생입장에서 강사가 출제자의도를 보여주니...
-
두 문제 틀렸는데 그럴수도 있음?
-
1. 의사 면허가 모든 것을 책임져주는 시대는 언젠간 반드시 사라질 것 같다....
-
경제하다와서보면얘는ㄹㅇ..
-
올해 지구 1
50 50 47인데 과외 경쟁력있음? 근데 이제 수능찍맞n개를 곁들인 ㅋㅋ
-
머가 더 지금시기에 와닿음?
-
ㅇㅈ 2
ㅇ
-
안녕하세요 사탐,과탐 둘 다 노베이고 어느것을 할까요? 미리 경험하신 분들께 조언...
-
님들이 저라면 자퇴함? 11
2-1까지 성적 1.64 근데 이번 중간고사 3.33 맞아서 총합 2점대 오픈함...
-
기출 푸는데 갑자기 미적기하 선택에서 그런거 없어지고 기하랑 다 들어있길래 뭐지...
-
신선하다는 의견을 많이 봤는데… 그냥 사설에서 나오는 유형 아님??
-
말 되나요ㅠㅠ
-
수학 잘하려면 2
수학 개념을 다 익히고 문제푸는거에요 아니면 개념 보고 바로 문제를 풀어서 개념을...
-
시험장에서 공통 은 잊어버렷는데 미적이 존나 어려웟어서
-
1컷 84~85면 내가 승
-
하늘이 예뻐 6
전 가끔 하늘을 보고 지려요
-
하ㅠ
-
아..적당히 해야지
-
님들 과외 어디서 구함 13
답답하네
-
반수하신분들…. 4
반수에 도움되는 조언 한마디씩만.. 부탁드립니다… 무휴반해야할수더 있고요…....
-
안녕하세요! 부산진학지원단 가채점 통계자료와 실채점 결과를 활용하여 '올해는 어떻게...
-
끊어야하는데 하.....
-
오늘은 6승 3패 막판 탑 케틀 후픽 박은 새끼야 다신 만나지말자
-
걍 일러 투척 7
-
문과면 메가패스 2
살 필요가 없지 않나요..?
우변에서 ln2는 괄호 밖으로 나와야해용
아 감사합니다!
ln(k-t)=1/(k-t) 에서 'k-t'의 값이 상수입니다. 따라서 k는 t값에 따라 변하는 변수입니다.
지적 감사드립니다. 혹시 이 방법으로는 풀이를 끝까지 진행 못할까요?
가장 마지막 식에서 양 변에 (k-t)를 곱합시다
이때 ulnu=1을 만족하는 상수 u는 유일합니다. 이런 u에 대하여 k=t+u입니다
그 다음 이걸 싸그리 식 ㄱ에 대입합니다
혹시 다시 한 번 설명 해 주실 수 있나요?
k는 t에 대한 변수이므로
ulnu=1을 만족하는 u가 상수니까
k-t = u상수라 두고,
k= t+u를 대입해서 정리하면
u상수 t는 미분 가능하므로
k에 대한 미분처리가 가능해진다는 말씀이신거죠?
그렇습니다. dk/dt = 1이고 그것보다는 식 ㄱ의 k자리에 싸그리 t+u를 대입하는게 나을겁니다