12수능 가형 21번 문제 도와주세요~~ 엄청 자세하게 질문드립니다 TㅁT
게시글 주소: https://games.orbi.kr/0003125877
수리의 비밀에 예제로도 실려있는 문제인데요
흑흑 제가 이해력이 많이 부족해서 [삼각형 ABC를 포함하는 평면]과, [yz평면], [x-2y+2z=1]
이 세 평면이 하나의 일직선 상에서 만나도록 이동시키라는 게 어떻게 가능한건지 잘 모르겠어요 TㅁT 도와주세요
제가 이해한게 맞는건지 확인해주시면 진짜 힘이 날것같습니다 도와주세요
[yz평면], [x-2y+2z=1]이 두 평면은 이미 공간 상에서 위치가 확정된 건데
반면에 [삼각형 ABC를 포함하는 평면]은 위치가 확정된게 아니고 보기에서 주어진 조건을 만족하는 상태로 공간 상에 존재하는거자나요??
즉 세번째 사진의 상황처럼 있을 수도 있는거지만 4번째, 5번째 사진과 같은 상황도 가능한거 맞나요?
그런데 문제에서 구하는건 삼각형 ABC를 [x-2y+2z=1]에 내린 정사영의 '최댓값'을 구하는거니까 세번째 사진과 같은 상황이어야
[x-2y+2z=1]와 [삼각형 ABC를 포함하는 평면]이 이루는 각이 최소가 되고 우리가 구하는 값이 최대가 되기 때문에
세 평면이 일직선 상에서 만난다고 가정하고 푸는건가요??
TㅁT... 근데 세 평면이 일직선 상에 있지 않은 상황일 때가 답이 되는 상황인 문제가 나올 수도 있나요??
흑흑 도와주세요.. 제가 머리로 상상해내는걸 잘 못해서요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
팩트는 가형 나형 유불리와 사탐 과탐 유불리보단 덜하다는 거임..
-
질문 받음 0
히히
-
고2인가봐...귀여워
-
안녕하세요. 학습자료 탭에 처음으로 글을 써보려니 뭔가 두렵네요... 아는 동생이...
-
왜 비오냐 2
아 눈오라고~~~!~!~!~!~!
-
둘 중에 틀리면 ㅈ되는 과목이 뭐임?
-
무슨펌하지 2
좀 머리 피고싶은데
-
확통사탐이라 이과친구들에 비해서 시간이 남는 편이랑 수학 공통에 많이 투자할...
-
평소랑 똑같이 행동하면 되겠죠?? 막 다르게 행동하면 부담되겠져??
-
학교에서 억울하게 왕따를 당하다가 결국 자퇴하고 공부하려는 학생인데 그냥 부모님도...
-
11월 30일까지였어 하지만 우리에겐 교복 할인이 있어
-
오지훈 지구 1
oz매직 개념 2025껄로 강의 들어도 괜찬을까요
-
여기 있는 사람들이 잘알것같아서 질문올립니다
-
내일 비와? 1
눈 아닌걸 다행으로 생각하자...
-
저 환산식이 어떤 의미 인지 1도 모르는 샠기들임 기본 베이스가 미적이 불리인데 어휴
-
“가성비 과외”라고 하는 것 강사가 본인 실력/경력 딸리니까 가성비로 커버치면...
-
당연히 기본문제들은 풀리는데 공식도 이게맞나? 하면서 기억 안나는거에...
-
둘다 경기도에 약대에서 한쪽 선호도가 매우 높은걸로 아는데
-
지게차 따려면 3
그 전에 운전 면허 잌ㅎ어야 함? 없는데 큰일이네
-
스타시티에서 쇼핑하고 밥 먹고 건대 호수를 걸을까 뚝섬을 갈까
-
작년 변표? 통합 변표?
-
메가패스 샀다 0
군인할인 감사해요
-
생1 말고 1
생리
-
분위기 어떰? 오르비 고닉 중에 오르비 과외 시장에 얼굴 까는 사람 있음?
-
하아 제발..
-
제발 그렇다고 말해줘요 서울대는 못갈것같음
-
이제 진짜 할 수 있음뇨
-
2117×20 4
42340개 현재까지 쓴 댓글 개수.
-
4수 이상 손들어봐 13
우린 고등학교 2번 이상 다닌 거야 고학력자야 띠발
-
석촌호수왔어요 20
-
양아치일까 찐따일까 평범한 사람일까
-
확통 미적 0
확통으로 수의대나 약대 갈수있나요 화작 확통 과탐 별로인가요
-
게@이행동 하지만맛있죠.
-
4만개 넘었으려나
-
내기억이 맞다면 확통 망했다고 미적런한다고 난리였는데 1년만에 이렇게 바뀌네...
-
28수능부터 어차피 바뀌니 무관심한건가 진짜 이게 맞나 싶네
-
1.서울대 정치외교 최초합 뚫어버리기 2.다이어트+한시간마다 운동 해주기(푸쉬업...
-
전전적대로 다시 가기 이거 개미친짓같지만 기숙사 이슈 때문에 반수하려면 이게 더 나은거 같음ㅠㅠ
-
고1모고 100가끔뜸 고정1 고2모고 90대 초반-90중반 진동 예비 고3 인데...
-
먹고싶다. 2
-
사탐 공대 1
내년 수능 준비 중인데요 언매 미적 사탐으로 연고 서성한 높공이나 계약학과 갈 수 있나요?
-
국어라는 과목은 2
한국어를 읽는거긴 하지만 그 본질은 정보처리능력, 인지능력을 확인하는 과목이라 생각해요
-
☠️ 2
☠️
-
졸업이 올까요? 3
하아
-
부흥 1
부흥
수리의 비밀에 나와 있듯이
삼각형이 있는 평면이 결정된 게 아니기때문에
적당히 평행이동시켜서 한 직선에서 만날 수 있다고
생각하는거죠
아 근데 모형귀엽네요 ㅋㅋ
한석원쌤 해설 함들어보세요
글쓴분 왠지 공부 잘하실거 같네요 모형 ㄷㄷ....
쓰신대로 생각하셔도 되고 좀더 간단히 풀면
어차피 삼각형 넓이는 확정되어 있고, 변수는 평면들끼리 이루는 각뿐이죠. 따라서 법선벡터만 그려서 법선벡터들끼리 이루는 각만 생각해보시면 편합니다.
맞아요 마주보고 섯을때가 최소임당
저 문제는 복잡하게 생각하면 정말 복잡해집니다. 단순하게 생각해야해요.
평면은 법선벡터 그 자체로 생각해도 과언이 아닙니다.
법선벡터는 결국 이면각을 알아내는 아주 중요한 수단이 되죠.
이면각은 결국 정사영의 각도에 바로 적용!
yz 의 법벡을 n_1, x-2y+2z=1 의 법벡을 n_2 라 하고, 평면 ABC 의 법벡은 n 이라고 합시다.
일단 "고정된 법벡" 인 n_1 과 n_2 를 시점이 일치하게 찎찎 긋자구요.
그리고 문제 조건으로 n 과 n_1 사이의 각도는 알아낼 수 있겠죠?
근데 우리가 더 생각해야할 점은, 이 벡터들을 사실 평면에 있는 것처럼 표시했지만 실제로는 모두 공간상의 벡터들이란말이죠.
따라서 n은 n_1 과 어떤 일정한 각을 이루면서 n_1 을 휘휘도는, 마치 "n 이 원뿔의 모선인양 n_1 을 휘휘 도는겁니다."
그렇다면, n_1 을 휘휘 돌면서 n_2 가 이루는 각이 최소가 될 때는 바로, n, n_1, n_2 이 모두 같은 평면에 있을 때인 것입니다.
이제 더 설명 안해도 쉽게 풀리실겁니다.
이님 풀이가 최적입니다.. 요즘 법선벡터.가 이루는각 많이 물어보네요..9월도그렇고
답변해주신 분들 정말 다 고맙습니다 가려웠던데 시원하게 긁은 느낌이에요ㅋㅋ 이힝유홍님 특히 감사합니다 정확하게 이해됐어요 XD !!!
지나가다 도저히 댓글 안달고는 못 배길거 같아서댓글 남깁니다.. 사실 댓글 다신 분들 말씀처럼 그렇게 머릿속에 그려서 직관적으로 이해해도 답은 맞출 수 있을거에요.. 근데 이 문제가 객관식 마지막 문제였다는 점과 여태껏 평가원 공간도형 문제에서 이 정도의 고난도 상상력을 요구하는 문제는없었다는 점과(실제 이 문제 처음 접한상태에서 풀어보신 분은 어느정도 비약적 사고는 가능할지 몰라도 이렇게 평면을 돌려가며 생각하긴 힘드시단걸 알거에요) 특히 평가원이 수능 후 발표한 자료집에서 이 문제의 출제의도는 법선벡터의 성질이였음을 감안하면 이 풀이는 평가원이 의도한게 아니란 생각이 드네요...
제가 말하는 다른 풀이는 일단 삼각형이 있는 평면의 yz로의 정사영이 넓이로 나오기때문에 구하는 평면의 법선벡터에서 성분x는 0이 될 수 없으므로 법선벡터는 (1,a,b)로 둘 수 있고.. 이걸로 주어진 조건을 식으로 나타내보면 두 가지가 나오는데 (a,b)의 자취는 원이 나오고 이 중에서 정사영의 최소는 b=ma+n 꼴의 식으로 나올겁니다 그럼 예전에 한창 평가원에서 자주 낸 테크닉인 원 자취에서 만족하는 직방의 최대최소(접할때).. 뭔지 아시겠죠? 그렇게 풀어보시면 답이 나옵니다.
자세히 설명 못드려서 죄송하구요 정말 제 개인적인 생각으로 저 풀이가 출제의도라고는 도무지 생각이 안되서 글 남기고 가네요..
이문제는 엄밀하게 풀려면 반드시 법선벡터를 활용한 수식적인 풀이를 이용해야 해요 절대 직관적으로 평면화 과정을 통해선 해결이 안되요