미분가능성-개념탄탄하신분
게시글 주소: https://games.orbi.kr/0003073848
그림과같이 도함수가 저렇게 생겨있다면 x는 1에서 미분가능할까요?
우미분계수=좌미분계수=0 이므로 미분가능할껏같기도한데
x=1에서 미분계수 f'(1)=우미분계수=좌미분계수 아닌가요?
그럼 2=0=0 되버리는데
1.무엇이 논리적으로 잘못되는지 알고싶습니다.
2.또한 도함수가 저렇게 생겼으면 미분가능할까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘도 성립햇다
-
ㅇㅂㄱ 5
반갑습니다
-
추합 가능할까요 ㅠ 작년에는 117번까지 돌던데..
-
이거ㅠ며칠만에 허리 나가나요? 다리로 하고있긴 한데 허리 원래 뻐근한게 정상인가
-
시발 지금까지 출석 안한새끼를 믿으면 안돼!!!
-
기차지나간당 4
부지런행
-
이야
-
인터넷으로 여기저기 찾아보면 봉사활동 하는 모임 있음 좀 빡시게 봉사하는데도 있고...
-
[속보] 尹 변호인 “대통령 공수처 자진출석 협상 중” 4
속보 [헤럴드경제] 윤석열 대통령을 변호하는 석동현 변호사는 15일 자신의...
-
자신 있는 척 하고 최선을 다해야지
-
출근시간에 길막 ㅋㅋㅋㅋㅋ
-
독감 구엑
-
평생이일만하고싶은데어떡하지
-
개추워미쳤나봐
-
[서울경제] [속보]尹측 "대통령 체포영장 집행돼"
-
[속보] 김성훈 경호차장 체포 버스 호송 중…尹 대통령 관저 밖 나올지 주목 1
[속보] 김성훈 경호차장 체포 버스 호송 중…尹 대통령 관저 밖 나올지 주목
-
[속보] 경호관 대다수, '尹 2차 체포영장 집행 막으라' 지휘부 명령 거부 1
윤석열 대통령에 대한 고위공직자범죄수사처(공수처)와 경찰의 2차 체포영장 집행...
-
중앙대 발표!!!!! 12
5시간 27분 전!!!
-
[서울경제] [속보]尹대통령, 곧 관저 밖으로 나올 예정
-
생윤 사문 1
2월 한달동안 생윤 사문 한 번 돌리면 3모때 대략 몇등급까지 가능한가요..?
-
여캐일러 투척 5
화2 정복 4일차
-
24수능->25수능 국어 백분위 80-> 백분위 91 수학 백분위 80-> 백분위...
-
요요 0
유유
-
오늘도 가즈아 2
주저하지 마! 망설이지 마! 지금 당장 시작해! 네 모든 것을 걸고, 네 모든 것을...
-
밤 안새고 지금 일어난 내가 승자다
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
의사면 인생이 편하겠지만 마음이 편하시진 않은 것 같네요 근묵자흑이라고 마인드가 딱...
-
얼버기 4
죠은아침
-
얼부기 5
온앤온
-
양치카치카 0
푸카푸카
-
[속보] 경찰 대통령 관저 진입 시작...경호처 기존 대기선 뒤로 물러나 1
경찰 대통령 관저 진입 시작...경호처 기존 대기선 뒤로 물러나
-
얼버기 9
갓생 3일차
-
면접이다 0
후
-
투표해줘봐~ 2
확통도 현우진할까 다른강사들을까?
-
수학 공부법 1
고2모고 다 1이고 9모는 99.5였어요 현역이라 아무래도 미적이 부족해서 시대...
-
설사범 면접 3
잘 보면 면접 끝나고 후기 써볼게요
-
제발 100일 찍어보자
-
이 와중에 형보수지 외치는 아저씨는 발성 ㅆㅅㅌㅊ시네
-
꾸중글 0
꾸중듣기
-
올해 의료정상화로 대량의 의대교수를 뽑은게 지나고보면 기회였을수도 있겠음 0
대학병원 ㅈ망한다 대학병원에서 바이탈하는거 진짜 ㅈ같아서 못하겠다 환멸감을 느끼고...
-
진짜 개부끄럽다 ㅋㅋㅋ 고딩때뭐한거지
-
1. 환자 진료보고 수술하고 일과 끝나고 나서도 회사에 남아 논문쓰고 자기가 스스로...
-
명문대 마지노선 4
Chatgpt 피셜 스카이까지라고 함.
-
(실시간) 이재명 따라다니면서 "거기를 찢지말아주세요" 외치는 아저씨 0
관저 앞에도 왔음 mbc 라이브 보는데 발성 개쩜
-
20번은 갠적으로 탈20번 느낌임 30번은 나눠서 분석하는게 생각보다 깔끔함...
-
[속보] 공수처·경찰, 대통령 관저 진입 시도… 몸싸움 발생 1
[속보] 공수처·경찰, 대통령 관저 진입 시도… 몸싸움 발생
-
그래서 여러분 지금 체포영장 발부되기라도 했나요 아니잖아요
ㅇ,ㅇ
도함수가 x=1에서 연속이 아닙니다.
즉, lim(x->1)f`(x) = 0 은 맞는데 f`(1)은 정의되어있지 않기때문에 lim(x->1)f`(x)≠ f`(1) 입니다.
f`(1)이 정의되지 않기때문에 f(x)는 x=1에서 미분불가능입니다.
1. 도함수 f`(x)가 x=1에서 연속이 아니기때문에 f`(1)=우미분계수=좌미분계수가 성립되지 않습니다
2. f(x)는 x=1에서 미분불가능합니다
헐ㅋㅋ(1,2) 점찍혀잇는거구낰ㅋㅋ왜못봣짘ㅋㅋ
연속이 아니네요;;.. 미분 가능하면 연속이다.의 명제의 대우는 불연속이면 미분불가능하다. 위의 그래프는 불연속이므로 미분 불가능.
그건 원래 함수 일때 아닌가요? 이건 도함수요
http://orbi.kr/bbs/board.php?bo_table=xi_orbi_mat&wr_id=21347
예전 오르비에서 답을 찾았네요
문레기라 이해는 잘 못하겠지만 결론은 도함수의 연속과 함수의 미분가능성은 관련없다 같네요
교과과정에서 구멍 뚫린 도함수를 다루지 않아서 연속이라는 더 큰 범위로 설명할 뿐 위 경우는 도함수가 존재하므로 미분가능합니다.
f'(1)=2
실제로 저런 도함수는 존재할 수 없습니다.
하지만 출제자의 내공 부족으로 저렇게 출제가 된다면 "미분가능하다."라고 판단해줘야 합니다.
왜냐하면 위의 박근우님 말씀대로 f'(1)이 존재하기 때문이죠.
저 그래프에서 알수있는것은 f'(1)=2 이기 때문에 좌미분계수(평균변화율의 좌극한), 우미분계수(평균변화율의 우극한)가
모두 2라는 것입니다. 글쓴이께서 계산한건 좌미분계수가 아니고 "도함수의 좌극한값"입니다.
댓글을 여기까지 내려야만 정상적인 답글이 보이다니 ㄷㄷ.. 정말 정확한 답변.. 저런 도함수가 존재할 수 없는건데 ㅎㅎ
즉
x=1에서의 우미분계수= lim(x->1+0) f(x)-f(1) / x-1
이고
x=1에서의 도함수의 우극한 = lim(x->1+0) f'(x)
인데 둘은 명백히 다르다는 것이고, 당연히 미분계수의 정의로 미분계수를 구할 때는 위의 정의를 활용해야하는것이죠.
되게 유명한 함수인데
f(x)
=
(x=0) 0
(x=/=0) x sin(1/x)
f(x)
=
(x=0) 0
(x=/=0) x^2 sin(1/x)
... 이런 것들의 x=0에서의 미분계수도 구해보고 도함수의 연속성도 확인해보고 하세요.
아 그러니깐 우미분계수가 도함수의 우극한과는 다른개념이며 명백히 f'(1)=2 이여서 도함수의 연속과는 별도로 미분가능하다는 말씀이군요.감사합니다
미분함수가 빵꾸가 뚫릴순 있어도 저렇게 미분값이 따로 존재할순 없어요 저런 그래프의 원함수 그려보세요 못그려요
그리고 빵꾸만 뚫리면 미분가능함
그림이 참 멋쩌열
교육청인지는 모르겠는데 실제로 저렇게 문제 나온적 있습니다. 그리고 답도 미분 가능하다 였고요. 저거랑 똑같은 함수였는걸로 기억나네요
f ' (1)=2 로 1에서 미분가능합니다.
기출에 출제된 바 있습니다.
4점짜리로 기억합니다.
저렇게 도함수 그릴 수 잇는 함수가 어떻게 생겻는지 궁금하네요 ㄷ
난만한씨가 잘 지적해주셨는데요.
대학교 2학년 해석학 시간에 Darboux의 정리(사잇값 정리를 보다 일반화한 것입니다.)란 것을 배우면
"이런 도함수는 존재할 수 없다"는 것을 이해할 수 있습니다.
만약 모의고사에서 이런 문제가 출제되었다면 출제자가 문제를 잘못 출제하신 겁니다.
다만 도함수가 불연속인 경우는 존재할 수 있는데요.
이 경우 함수가 대단히 심하게 진동해야 돼요.
보통 이런 함수를 가리켜서 병리적 함수(pathological function)라 부르죠.
미분계수를 정의할 때 등장하는 좌미분계수와 우미분계수가 일치해야 한다는 개념과
도함수의 우극한과 좌극한이 일치해야 한다는 것은 서로 다른 별개의 개념입니다.
미적분학을 열심히 공부하다보면 한 번 정도 이 둘을 명확히 구분하기 위해서 머리가 지근지근 아파야 합니다. 일종의 성장통이죠. ㅎㅎ