MediVa : 9월 모의고사 집중분석 _ 공통 16번
게시글 주소: https://games.orbi.kr/0003047991
(309.9K)
[2036]
9월 공통_16(Orbi).pdf
안녕하세요. 방학도 일찍 끝나고 시험기간이 닥쳐와서
정신이 없었습니다.
오르비에 올릴 만한 자료들을 만들기 쉽지가 않아서
그 동안 글을 올릴 경황이 없었는데
이번 9월 모의고사에서 올라간 수리영역 난이도를 보고
해설자료를 만들고 있어서 이 곳에 올리려고 합니다.
일단 가,나형 공통문제 부터 작업하고
나형, 가형 순으로 작업할 예정입니다.
시간적으로 여유가 없지만 가형 작업도 되는대로 진행을 하려고 합니다.
* 수정
6페이지에 있는 B-E의 역행렬이 존재하지 않는지 알 수 없다를 존재하지 않는다로 수정해 주시기 바랍니다.
* 수정
6페이지에 있는 B-E의 역행렬이 존재하지 않는지 알 수 없다를 존재하지 않는다로 수정해 주시기 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
아무래도 해설을 자세하게 쓰려고 하다 보니 완성에는 시간이 좀 걸릴 것 같은데 이번 주 주말까지 완성하고자 합니다. 다음주부터는 또 시험기간이라서요.
이런자료..정말 감사합니다bb
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=3037928
에 sos440님의 댓글을 참조하면
Warming Up의 5번 명제는 거짓이 아니라 참이라고 합니다.(중요하진 않지만 그래도 ..)
또 6페이지에
B-E의 역행렬의 존재성을 모른다가 아니고 존재하지 않는다고 서술해야 할 것 같습니다.
6페이지는 쓰다 보니 잠깐 잘못 생각했네요. 수정하도록 하겠습니다.
Warming Up의 5번 명제는 sos님의 명제와 약간 다른 것 같은데
제가 확인한
[명제] 두 2차 정사각행렬 A, B에 대하여, A^2 - 2AB + B^2 = O 이면 (A-B)^2 = O 이다.
이것을 말씀하시는 것인가요?
5번 명제는 A^2 -2AB +B^2 = (A-B)^2은 항상 성립하다이고,
이것은 식을 정리하면 AB=BA가 항상 성립한다는 것이니 조금 다른 것 같습니다.
아 그 [명제]에 관해서는 제가 착각했군요. 감사합니다~
진짜 쩔어요 ㅋ
메디바님 나형 21번 문제 분석좀 부탁드려요.. 이게 사실은 사람들이 그냥 방정식의 관점으로 풀어서 정답률이 그닥 낮지 않은데 이거 방정식으로 풀면 a=0일 때를 못 구하더라구요. 이거 실제 난이도는 이번 시험에서 제일 높았던 것 같은데 사람들이 그냥 풀어서 오답률은 낮은 것 같아요 방정식 관점이 왜 안되는지 분석좀요 ㅠㅠ
완전동감 저도 시험때는 덜덜덜 떨면서 'a 모두의 합인데 하나밖에 없네ㅠㅠ' 이러고 끝나고 나서도 방정식으로 푸니 그대로 나오더군요...
이거 방정식으로 어케푸셧어요? 전 걍 기울기 생각해서 따져봤는데..ㄷㄷ
(B-E)의 역행렬이 존재하는지 아닌지 알수없는게 아니라
존재하지 않는다는걸 빨리 명시해주시는게 좋을것 같아요
일단 파일이 올라간 상태라 글에 덧글로 붙였구요, 조만간 다른 문제도 함께 올릴 것이라 그 때 수정을 반영하겠습니다.
올려주신 자료 참 많은도움 되고있습니다
이런거 얻어가는 맛에 오르비에 들어오네요 ㅎㅎ 감사드립니다
진심으로 감사드려요!!ㅠㅠ