♠주말특집♠ 칸모 애교문제 1
게시글 주소: https://games.orbi.kr/0003037770
주말이라 킬러문제는 안올릴께요
주말까지 KILL 할 수는 없자나!!?
토욜이라서...새벽에 일어나자마자 여태 풀었던 수학모의고사를 복습하고 있는데.. 여태까지 8시간이나 걸렸음.
딴 과목은 모르겠는데 수학만 하면 이렇게 시간이 어떻게 가는 줄도 모르겠어여 ㅠㅠ
근데 복습 왜 이렇게 짜증나요? ㅠㅠ재미가 없어 ㅠㅠ 걍 모의고사문제 풀고싶어여 ..수학 새로운 문제 막 풀고싶어 ㅠㅠ
풀이법 좀 봐주세여~
우선 출제자 칸타타님의 풀이.
->원판의 넓이는 일정하지만, 원판을 포함하는 평면과 두 평면이 이루는 각도에 따라 그림자의 넓이는 달라진다.
그래서 원판의 법선벡터를 (1,a,b)라 두고 문자끼리의 관계를 찾아나가는 방법.
x=0 위로의 정사영의 넓이를 a,b에 대한 문자식으로 나타내고.
z=0 위로의 정사영의 넓이를 a,b에 대한 문자식으로 나타내어 연립.
이렇게 푸셨는데요..
음.. 저는..
두개의 코사인 값의 비로 1:2일 테니까 방향코사인 잡아준 담에..한개의 코사인 값이 0이 되야 최대가 될테므로..
음 왜냐하면 다른 두개의 코사인 값이 방향코사인에서 손상되면 안되니까...
한개의 코사인을 K라 두면 다른 코사인은 2K 이므로 방향코사인식에 넣어서 코사인 값 구하면 1/루트5가 나와서 풀었어여~
여러분은 어떻게?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
저는 저번에도 후기대로 정면에서본 2차원 그림으로 보고 삼각함수로 풀었어여ㅎ
님 풀이가 갑이에요 ㅋㅋ
제 풀이랑 비교될까바 일부러 님 풀이 안넣었음 ㅋ ㅠ
전 줄리엣님 풀이랑 비슷한거 같아요
저 그림 보고 제일 먼저 생각한건 법선벡터이긴 한데..... 그 다음에 생각난건
xy 평면 정사영 = s1
yz 평면 정사영 = s2
zy 평면 정상영 = s3 라고 하면
s1 제곱 + s2 제곱 + s3 제곱 = 원래넓이 제곱
그래서 y=0 평면 xz평면의 정사영 넓이가 0일때 최대가 되겠구나 하고 풀었네요
위식이 방향코사인과 연관된 식이다보니 줄리엣님 풀이하고 비슷하지 않나 생각이 드네요
오! 저랑 아이디어가 완전 동일한대요? *^^* 조아요~~ ㅎ
설명님이 정사영 넓이가 0일 때 최대가 되겠구나 하신 생각이.
제가 방향코사인에서 아예 한 쪽은 방향성이 없어줘야되니 사라져줘야 겠구나..그렇게 생각했는데!
동일하네요! ㅎ