똑같은 함수식인데 다른 개형이 나올 수 있나요? y=x^(2/6) 와 y=x^(1/3)
게시글 주소: https://games.orbi.kr/0002967448
1은 짝수차라서 우함수 y축대칭
2는 홀수차라서 기함수 원점대칭
그런데 2/6 = 1/3에서
x^(2/6)=x^(1/3)
???????????????
이 그래프가 맞는지가 일단 모르겠고
맞다면 식이 똑같은데 왜 개형이 다른건가요?
분수 지수는 맘대로 약분할수 없다든지 그런 이유가 있을 것 같은데..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기범T는 필수본을 한 단원 먼저 들으면서 3순환과 병행하라고 하시는데 문제를 많이...
-
연애하고싶다 21
그렇습니다
-
네
-
그중에 하나가 기하인듯 내 머리에선 공간도형이 빙글빙글 돌면서 적절하게 납작해지거나...
-
유튜브에 "대학 합격의 순간"검색해서 모음집 좀 보면 동기부여 엄청 납니다. 근데...
-
중앙대는 뭐냐 5
중대냐? 앙대냐?
-
3합마렵다 1
ㄹㅇ합격증3개내놔 ㅜㅜ
-
..?
-
이거 뭐 고름 5
성욕은 ㅈㄴ 많은데 고자,탈모+전세계 아무 대학이나 갈수있고 그에 맞는 두뇌 능력...
-
현역 재수 그저 빛
-
맞팔구 10
은테로 향하는 여정....
-
재수생 공부량 13
망한건가요 헬스랑 병행중이긴한데
-
당뇨 경계선이라던데 일주일에 2~3번정도 등산가려고 공부시간 줄어들어서 좀 그렇긴한데..
-
한달동안 왜안오나 했다 침대튀함
-
거기서 근무한 공익이었는데 전화받을때마다 xx동 행정복지센터입니다. 하는거 넘 길고...
-
저는 05인데 주민센터라고 부름요 ㅎㅎㅎㅎ
-
서울 양산 연애 ㄱㄴ? 13
-
연애횟수 재조사 8
ㅈㅅㅎㄴㄷㅈㅅㅎㄴㄷㅈㅅㅎㄴㄷ
-
뭐야 애니메타였음?? 13
내가 이걸 놓친건가
-
올해꺼 달라진거 많으면 작년교재로 올해꺼 듣고 아니면 작년강의 들을까 고민중인데...
-
체력은 그냥 종잇장급입니다 요즘 공부한답시고 1시반에 자서 8시에 일어나는중인데 좀...
-
최초합인데 아버지가 전전 빼고는 미래가 전부 불투명하다 하셔서 그냥 중대 장학금 받고 다니라는데
-
오늘 문학 풀면서 정석민식으로 추론해보며 읽었는데 지문안에서는 둘이...
-
모쏠이 아니야?
-
전국에 국어 만점자 있긴 할까요
-
걍 난리날듯
-
서울대 정시면접 0
부담 별로 안 가져도 된다고 듣긴 했는데 혹시 알아두거나 미리 생각해두고 가면 좋은...
-
가능하다면…
-
누적되어오다가 어느순간 쭉쭉 빠짐
-
ㄹㅇ임뇨?
-
만드는것도 재밌고 결과물 받아서 공부하면 뿌듯하고 공부 잘됨
-
리트 언어이해 지문 분석해보라고 했더니 문장 단위로 이렇게 해주네요...
-
지듣노 1
-
없어서 공부했다고.
-
엠-지들이 어떻게 노는지 열심히 배워가는 중
-
언 77 69 61 51 화 80 72 64 55 미적 76 68 60 51 기하...
-
전남친이 1살 연상 서울대생이엇음 고3 초에 건동홍도 애매한 성적대였는데...
-
근데 저능부엉이 2
프사때문인지 보다보니까 왤케 귀여움?
-
아가 자야징 6
모두 굿밤
-
국어점수는 어렸을때 독서량에서 이미 결정이 나버리는듯 3
어렸을때 책 꽤 읽었었는데 아예 노베로 모고 첨봤을때 2떴었고 기출 세번 돌리니까...
-
일단 수분감 스텝1까지 하고 뉴런들을생각이긴한데 4등급이 1년동안 뉴분감만해도...
-
스포츠 H2(야구. 그 시절 로맨스) 슬덩(농구. 낭만 좆됨) 핑퐁(탁구. 짧아서...
-
난 자꾸 돌아보겠죠 그곳엔 아직도 그대가 있어서 그래서 아픈가봐요 한 번쯤 꼭 한...
-
75 67 2 84 86 83 92 2 96 88 88 96 1 91 98 100...
-
고려대 심리 1
649.7인데 가능할까요? 확률 어느정도 보셔요?
-
1.푸앙이- 중앙대( 이름부터 푸~~앙~~ 같아서 귀여움. 입시요강 학교로 1년동안...
-
제 여자친구에요 26
2D여친이에요 인사하세요
-
후
-
배민 시켰다 ㅋㅋ
위의 식은, 근호 안이 항상 양수라, x의 값에 상관없이 y는 항상 양수 (x=0일때만 y=0)
아래의 식은 근호 안이 음수일 수도 있으니, y는 양수일 수도 있고 음수일 수도 있고. (x=0일때만 y=0)
식을 근호형태로 쓰지 않고 x^(1/3), x^(2/6) 이런식으로 쓰면 결과가 달라지나요?
본문의 함수식은 x^(1/3), x^(2/6) 이것과 같은식이 아닙니다. 지수법칙에서 분수제곱의 형태일때 밑은 음수가 될 수 없기 때문에, 이 함수들은 정의역이 x>0 으로 제한이 되는겁니다. x=0도 들어가지 않아요.
따라서 이렇게 분수로 쓴다면 x>0이 확정되기 때문에 x^(1/3)=x^(2/6)이 성립 합니다. 이는 위의 그래프의 x>0인 부분에서도 확인 가능하구요.
위 식과 아래식은 똑같은 모양은 맞아요. 다만 위 식은 x값이 음수여도 함숫값은 항상 양수지만, 아래 식은 x값이 음수이면 함숫값은 음수지요. 즉 x<0일 때 위 식과 아래식은 y=0에 대칭인 관계인 거죠
정리하자면 위나 아래나 그래프의 모양 자체는 같지만, 단지 x<0일 때 치역의 범위가 서로 다른 거죠. 위식의 함숫값을 f(x)라고 하면 아래식의 함숫값은 -f(x)이 되는 것일 뿐인 것.
보통 우리가배운 지수 대부분은 0보다 작을때 성립을 잘안합니다 위도 그런경우입니다.
식이 똑같다는 생각 자체가 오류입니다.
물론 x ≥ 0 인 볌위에서는 두 식이 똑같이 x^(1/3) = x^(2/6) 이 되기 때문에 같아지지만, x < 0 에서는 '유리지수가 정의되지 않습니다'!
교과서를 탈탈 털어서 잘 살펴보세요. 우리는 밑이 양수가 아닌 경우 오직 정수지수에 한해서만 지수를 정의했을 뿐 유리지수나 실수지수 따위를 정의한 적이 없습니다.
그래서 당연히 지수법칙도 쓸 수 없고, 두 식이 같다고 이야기할 수 없는 것입니다.
그러면 왜 밑이 음수일 때 지수를 정의하지 않을까요? intabiloo님이 잘 이야기해주셨듯이, 지수법칙이 상당수 깨지기 때문입니다. 지금 목격하신 경우 자체가 바로 여기에 해당되지요.
사실 이점이 재미있는 부분인데, 처음 배울 때에는 거듭제곱근과 유리지수를 연결짓는 것에 곤란을 겪곤 하는데, 익숙해지만 반대로 둘을 항상 같은 것으로 생각해서 혼란이 오곤 하지요. 둘이 일치하는 범위는 (적어도 고등학교 범위에서는) 오직 밑이 0 이상인 실수일 때뿐입니다.
sos님 질문이 있습니다. 제가 배우기로 0의 분수지수는 정의를 하지 않았다고 배웠는데, x=0에서 분수지수를 쓸 수 있나요? 루트x와 x의 1/2제곱은 다른 함수라고 알고 있어서요.
정의하기 나름이지만, x > 0 이면 0^x = 0 으로 정의하는 것이 상당히 그럴듯하지요? 함수의 연속성에 비추어보았을 때 말이지요. 때문에 0의 양수지수 거듭제곱을 굳이 정의하지 않을 이유가 없습니다.
하지만 이는 어디까지나 x^p 꼴의 함수를 생각할 때 유용한 것이지, 밑이 0인 지수함수라는 개념 따위가 유용하다는 내용은 아닙니다.
감사합니다 음수일때 분수지수를 조심해야겠네요