부정방정식 질문입니다.
문제)두 정수 a, b에 대하여 x에 대한 이차식 x^2+(3a+1)x+2a^2-b^2이 완전제곱식이 되도록 하는 a, b의 순서쌍 (a,b)의 개수는?
-시발점 수학(상)
저는 이 문제를 풀때, 완전제곱식이 되려면 '2a^2-b^2'이 일차항의 계수의 반의 제곱이 되어야 한다는 성질을 이용해서 풀었습니다.
현우진 선생님께서는 위의 이차식이 완전제곱식이라면 ( )^2 형태이므로 ( )^2=0이라고 치면, 중근을 가질거니까 '판별식=0' 이라고 두고 푸셨습니다.
현우진 선생님의 풀이가 이해가 조금 안되ㅅ qna로도 질문드려봤지만 돌아온 답변은 '가정일뿐이다'라는 것이였습니다.
제가 궁금한 점은, 어떻게 =0이라고 가정하고 풀 수 있는지 입니다.
혼자서 이걸 이해해보려고 함수로 생각해봤습니다. y=위의 이차식 꼴의 이차함수를 말이죠.
그리고, 이차함수의 함숫값이 0인 경우를 생각해보니까, 현우진 선생님 풀이대로 풀어도 문제가 없다고 느껴집니다만, 이차함수가 x축과 만나지 않을 때도 있기 때문에 헷갈립니다...
명확하게 설명해주실 분 계신가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제목만 보고 첩보물인줄 알았는데 그거랑은 좀 거리가 있었고 음.. 뭔가 많은 생각을...
-
하루종일 오르비 상주했는데 안 보이시넹 닉을 바꾸셨나
-
범인 색출한다고 싸우는게 ㅈㄴ 재밌는데 ㅠ
-
엿던거같아요 9평 직전에 들어갓는데 그 전엔 순공 6시간도 확보안됐었음 첨에...
-
인강 외에 다른거 잘 안돌아가나요?
-
본인을 사랑해주고 독기 가득하고 부지런하고 타인의 말에 휘둘리지 않고 매사에 최선을...
-
슈능 잘 본 자제분을 가진 학부모님을 봤는데 부럽더라 자신감 가득차신 그 표정이...
-
사실 나만 대학 가면 되긴 하는데
-
아 내일은 8시전에 일어나야서 광화문가야됨.. 싫다
-
사랑도사람도난너무나도겁나
-
ㅈㄱㄴ
-
이 시즌이 이래 고요하다니
-
호감
-
익숙한 향기로 너에게 물들어
-
비 오니까 좋네 2
코 건조한거 미쳐버리겠음
-
으흐흐
-
ㅇㅈ 21
십덕 ㅇㅈ이었고요
-
옛날에 봉사할 때 짱개들이 무조건 짱깨어로 말 걸고 대학 다닐 때 ㄷㅂ필 때 유창한...
-
다들보세요 넷플에도있고 쿠팡에도있음 나머진모름
-
수능 미적 3컷 0
공 4 미적 4 틀려서 69인데 3뜰까요?
-
도태남대결) 8
한국에서 베트남사람이 나한테 베트남어로 길물어봄
-
다들 잘자 10
-
10시간만해도 집중력 바닥나는대
-
찐 ㅇㅈ 8
“3시”
-
기하를 공통으로 너어야댐 왜케 많이 쓰임 이거
-
하 젠장
-
어마금 코믹스 전권 어과초 코믹스 전권 어마금 라노벨 전권 들고 가면 무적일듯
-
다 잘 먹고 잘 살더라....물론 지만 모르고 주변에 스트레스 팍팍 주면서
-
있나요? 가채<실채맞았나요?? 제 기억으로 시험지에 푼 답은 4인데 가채점표에는 3이라고돼있어서ㅜ
-
하하 4
운동 끝나고 집갑니다.
-
카카오 주식 사야 되는데 피곤하게
-
여대 제외하고 인서울 공대 가능한가요..? 지구를 너무 망쳐서ㅜㅜ 안되면 가천대는...
-
국어 : 유일하게 어떻게 해야할지 감이 안 오는 과목...노베고 고2 국어 모고...
-
이채영 이쁨 4
고트야
-
나 일본어 못 함 13
1도 못 읽음 근데 저거 한국에 정발 안 해서 그냥 일본갔을때 사옴
-
캬
-
제 성격변천사 7
현역 재수 삼수 옛날게시물보고 오해하실까봐 정리함
-
ㅇㅇ
-
좋은 유전자는 좋은 유전자끼리만 만나서 그게 계속 반복되다 보니 사기캐들이 많이 보이는 거 같음..
-
전글 사진..
-
님은 정말 의대 가길 잘하신거같아요 라고 치려다 참음..
-
취미가 독서임 18
네..
-
내 애인이 2
뭐가 더 극혐임?
-
오르비에 스포츠과학부 실기러가 과연 있을지? 저날 영하 10도만 안됐으면 좋겠다
-
현생에서 알파메일피메일이면서 여기서 막....진짜 배신감 들어서 울었음
-
노래부른거 ㅇㅈ 4
대충링크
-
캬 0
이게맞지
판별식을 쓰는 것은 방정식이라고 가정한 다음에 계산하는 거고요, 그래프를 이용해서 함수로 나타내는 것 역시 좌표평면상에서 y=0 (다른 말로 x축)과의 교점이 하나만 (실근은 2개, 서로 다른 실근은 1개(일명 중근)) 나오도록 만드는 겁니다. 둘 다 일종의 가정(if)입니다... 잘못 푼 것은 아니고요...
님이 접근한 이 식이 완전제곱식이 되려면 2차에서 1차항 계수의 절반의 제곱이 상수항의 제곱이 되는 형태로 푸는 것은 가정없이 가장 authentic하게 접근한 겁니다... 역시 이 풀이만 맞는 것도 아니고요...
수학은 관점에 따라서 자유롭게 변신할 수 있어야 합니다. 단, 그 변신이 논리적으로 잘못된 것이 없다는 전제 하에서요...
그런데 위의 이차식이 0이라는 값을 가질 수 없다면, 가정이 정당하지 않은 것 아닌가요?
가정이 정당하지 않은게 아니고요 완전제곱형태가 불가능하다는 결론이 나오겠죠... 실수체에서요...
방정식 꼴에서 완전제곱형태 말씀하시는 거죠?
( )^2=0 이 꼴이요.
예... 미지수가 포함된 방정식이라면 복소수체에서 따질 때에는 무조건 2차방정식의 근 2개는 존재하지만 실수체에서만 따지는 경우라면 있을수도 있고 없을수도 있습니다...
이렇게 가정해서 푸는걸 처음봐서 그런지... 익숙하지도 않고 별로 와닿지가 않네요ㅜ
아직도 이해가 안되요
수학 기법상 가장 광범위한게 행렬하고 방정식입니다... 식에서 성립하는 거면 방정식에서도 성립합니다. 방정식에서 성립한다고 식에서 성립하는 것은 아니고요... 이 말인즉슨 식에서 성립안하는 것처럼 보여도 방정식으로 놓고 보면 성립하는 경우도 존재합니다...
저 위에서 0을 가질 수 없을때는 완전제곱형태가 될 수 없다고 말씀하셨는데, 그렇다면 판별식=0을 활용할 수 없는 것이 아닌지요?
x^2 + 2ax + a^2-2a 이런 식이 있다고 하고 이게 완전제곱식이 되려면
1차항의 계수 절반의 제곱인 a^2 = a^2-2a이면 되겠죠... 그럼 a=0이 나오고 본식은 그냥 x^2이니까 성립합니다. 그런데 a가 0이 아니면 본식을 완전제곱식으로 만드는 a는 존재하지 않는거죠... 즉, 방정식으로 놓고 판별식을 쓰나 그냥 완전제곱꼴 변형을 하나 차이가 없다는 겁니다...
이제서야 생각이 났는데, 완전제곱식은 무조건 0이라는 값을 가지게 되있네요!
예를 들어 (x-a)^2이라는 식은 x=a일때 0을 가지듯이 말이에요.