3차함수 문제 풀어보세요~^^
게시글 주소: https://games.orbi.kr/0002798437
![](https://s3.orbi.kr/data/file/united/2949789724_Ta9FkVpJ_3ECB0A8ED95A8EC8898easy.png)
작년에 직전모의고사에서 통계를 해보니 정답률 약 60%였습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
솔직히 글 이해 이런거 별로 의미없었다고 생각함
-
마라톤대회 우승한 사람들이 파워리프팅 코치하는데 시급을 5만원씩 받아먹음
-
갑민가 쌩독해 ㅅㅂ
-
트럼프 "내주 다수 국가에 상호관세 부과 발표"…韓도 포함되나(종합) 1
美日 정상회담서 日총리에 "무역균형 이뤄야…관세는 적자 해결 옵션" "자동차 관세도...
-
계산량 밀어붙이기 (251129)랑 모든값의 합 세기 (251122) 이게 지금...
-
시대 방학 동안 수특 수완 싹 다 풀고 9평 치고도 풀고 재종 쌤 이비에스 자료도...
-
최강 삼성 승리 하리라~ 과외비 올인 할 준비 완료 엄마 아빠가 삼성팬이라 태어날...
-
[단독] 무안 로컬라이저 설계사 경찰 조사…‘제주항공 참사’ 수사 확대 [세상&] 1
경찰, ‘제주항공 참사’ 관계자 20여명 조사 ‘CVR’ 요청 등 공조 수사도...
-
런치 할인하길래 형님이 주신 기프티콘으로 가격 쌀먹했습니다 잘먹겠습니다
-
수능 전날 갑자기 조웅전 정을선전 중 하나 나올 것 같아서 수능 당일 아침에도 시작...
-
ㅋㅋㅋ
-
인강추천 0
기출에 맞게 사고나 행동 교정해주는 인강 추천 좀 물리, 지구
-
EBS연계 체감도 엄청 크게 되는거같고 계산량도 엄청나게 늘렸고 걍 깡으로...
-
추론 문제에 대처 가능한지는 이해의 여부지 스킬의 여부가 아님 그런데 모든 일이...
-
과외 시급 질문 2
서울대 물교과, 연세대 물리학과 최초합 타이틀로 걸어놓고 국어 수학 영어 과학 과외...
-
트럼프 “한반도 안전과 안정 위해 헌신”...미일정상 회담서 “북한 완전한 비핵화 노력” 1
[파이낸셜뉴스] 도널드 트럼프 미국 대통령이 7일(현지시간) 미일 정상회담에서...
-
근데 안할 이유가 없음 쉬운길 빙빙 돌아가는거
-
몇번 팔걷었더니 손목 다늘어났네 하
-
뭔가 24학년도 까지와 25학년도의 문제느낌이라고해야되나 이게 많이 달라짐...
-
나형 29번 현장에서 계속 다 맞을정도면 22점 확보 가능?? 그래도 가형확통...
-
ㄹㅇ
-
28년 전까지 모든 과탐과 사탐이 붕괴기를 겪을 것으로 보임 6
물화1이 그 붕괴 시기가 이른거고 그래서 그냥 유불리 여부 상관없이 이젠 님들이...
-
가격 ㄱㅊ은게 호걈이네
-
정답:77점 수령자: ㅁㄱㅁㄱ, ㅅㄷㄹㄹ 축하합니 다람쥐
-
님들향수뮤ㅓ씁? 1
??
-
우원식, 시진핑에 방한 요청…“비자 면제 관련 조치 검토” 1
[베이징=이데일리 이명철 특파원] 시진핑 중국 국가주석을 만난 우원식 국회의장이...
-
나만 고양이 없지
-
난 요새 이게 가장 고득점의 핵심이라고 봄(이건 제 개인 의견임) 독서가 난이도가...
-
작년에 사탐런 바이럴하던 모 네임드가 수능전까지 원장연한테 뒤지게 맞았는데 수능날...
-
매 년 피해자가 발생하는데 왜 안바꾸지 미인증표본 삭제하기 예상컷 삭제하기 이거...
-
유니스트 반도체 500.9 지스트 무학과 470.82 디지스트 무학과 500.91...
-
개념의 나비효과 대체할만한게있음??? 아님 다른교재랑 비교불가라 국어노베면 무조건 들어야함???
-
아.....그저..... 인생 자체가 억까다!
-
시대 재종 수업 듣는 강의실이랑 급식실은 배정된 부엉이 관이랑 같은 건물에 있나요?...
-
기숙사 신청이 정시 발표 2일 후에 마감이고 한 학기에 식비 필수까지 합쳐서...
-
수학하면 현우진쌤인것처럼 문학 1타는 누구다!! 도 있음???
-
맞팔99999 0
-
투표. 3
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
기출의 중요성은 떨어지는걸까요? 이전 시즌 고난도 기출 헤겔 브레턴우즈 우주론...
-
고2 국어 힌트:오늘 좀 조짐
-
Ils ne me veulent pas du bien 2
Ils font bonhomme de neige J'ai fait bonhomme de chemin
-
현역때 헬스터디급 노베라 공부 좀 했는데도 성적이 저렇게 나옴.. 지게차 기능사로...
-
진짜 처음 들어보는데 진짜 뭐하는 날임?
-
수시로 가려고 했지만 원하는 대학에 가기 힘들 것 같고, 목표에 도달하지 못하면...
-
시간당 1.5가 기본이네ㅋㅋㅋ 양심이 없는건가 그냥 뭘 모르는건가
-
레어 확인. 2
-
금테를 다려나…
-
수능 국어 소신발언 42
2409부터 쭉 눈알굴리기, 선지말장난이 변별의 중심이었던게 팩트임 문학 개념이니...
3번인가요??
정답입니다.^^
근데 저 궁금한게 저 ㄷ을 구할 때요.. f(x)=x^3-x^2-x+1이 나오는데 이 식에서는 f(1)=0인데 'f(1)<0이면' 될려면 x축을 위로 올리는 건가요?? 그래서 f(x)가 전형적인 삼차함수의 개형인데 근이 2개인 곳에서 x축을 위로 올리면 근이 3개일 수도 1개일 수도 있어서 그런 건가요??
ㄷ선지의 핵심을 잘 짚어내셨네요. 함수 f(x)를 들어 올리면 1,2,3개의 근을 모두 가질수 있기때문에 틀린 것인데
올바른 풀이는
ㄱ.에서 f(1)=f(-1)이죠? 그러고, f '(1)=0입니다. 따라서 f(x)=(x-1)^2(x+1)+a(단, a는 실수)
라고 놓고 상수 a의 값의 변화에 따라서 ㄷ선지를 해석하면 됩니다.
3번인가요?
정답입니다.^^
좋은문제 감사합니다 ^^
33
정답입니다^^
2번인가요? 낚인거 같은데 뭔지 모르겠네요
오답입니다. 함수의 극한에 대해서 좀 더 생각해보시길 바랍니다.^^
으악 잘못썼네요.
1번인가요......?
으악..ㅠㅠ 오답이에요.. ㄱ은 함수의 극한에 관한 선지. ㄴ, ㄷ은 삼차함수에 관한 선지입니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
3번요 ㅋㅋ f(x) = (x-1)^2(x+1)+f(1) 나오네요 ㅋ
정답입니다. 모범답안입니다.^^
1번?..
아 제 수학 좀 해야겠다.....
오답입니다.^^;;
조건에서 f 프라임 1이 0이라는거 말고 얻어낼 수 있는게 뭔가요 ㅠㅠ?
그게 있어야 풀릴거같은데 ㅠㅠ
ㄱ조건에 모두 답이 있습니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다
3번??
정답입니다^^
수리 캐허접인데 풀어보니 3번나오는데, 틀렸죠?
맞았어요 ^^
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수)
임을 이용해서 풀었다면 모범답안입니다.
f(x)=(x-1)^2(x+1)+k 로 하긴 했는데
첨에 f(x)=(x-1)(x+1)(x-a)+k 로 놓고 미분후 1대입해서야
a가 1임을 알아내서..
웬만한 분들은 걍 f '(1)=0 보고 바로 식 나오시는듯 하군요 ㅠㅠ
님처럼 푸신분들도 많아요^^;; 앞으로 잘알아두시고 써먹으시면 되는거에요 ㅎㅎ
계산 안하고 바로 생각해내는 사고 과정좀 알려주실수 있나요
ㄷ 풀때 그래프를 그려보면서 뒤늦게 자동으로 알게 되긴 하지만요..
삼차함수에서 도함수의 함수값이 0이라는것은 극솟값 혹은 극댓값을 의미합니다. 그 극값을 k라고 합시다. 그러면, f(1)=k, f(-1)=k 이죠? 즉 f(1)의 값과 f(-1)의 값이 같다는걸 유추할수 있습니다.
그럼 가장 쉬운 예로 k=0이라고 칩시다. 그러면 함수 f(x)에서 f(1)의 값은 x축에 접한 형태가 될것 입니다. 그리고, f(1)은 극값이므로 중근을 갖겠네요. 따라서 f(x)=(x-1)^2(x+1) 라고 유추할수 있습니다.
*) 왜 x축에 접하는 극값이 중근을 갖느냐?
2차 함수 y=(x-1)^2을 생각해보시길 바랍니다.
흠냐 답 ㄱ,ㄴ인가요?
정답입니다.^^
이과 문제로 내기에는 넘 쉬운것 같고 문과 문제로 내면 딱이겠네요~ ㅎㅎ
그래서 작년 SHC모의고사 (나)형에 출제됬던 문제입니다.^^;;
5번
오답입니다.^^
4번? 맞으면 ㄴ이 왜 틀린지 설명좀 해주실수 있을까요?
정답은 ㄱ,ㄴ이구요
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
5번 맞나요
오답입니다^^;;
ㅠㅠ 힌트까지 주셨는데 개형 못찾았네요.. ㅠㅠ
중근 형태인지 극점 두개 인지 어떻게 판별하죠 ?...
중근형태인지 판별이라..
이런것입니다. 어떤 삼차함수 f(x)가 x=0에서 극솟값 1을 갖는다고 가정합시다.
그러면 함수 f(x)-1은 x=0에서 x축에 닿는 형태가 되겠지요?
이렇게 "닿는 형태"(느슨하게 말하여) 일때 중근이라고 유추할수 있습니다. (수학적으로 엄밀한 것이 아닙니다. 수능에는 이렇게 생각하면 상관없습니다.)
만약 x=0에서 그래프가 x축을 아래에서 위로 혹은 위에서 아래로 뚫고 올라갔다고 칩시다. 그러면 삼차함수 f(x)-1=x(ax^2+bx+c)로 방정식을 쓸수 있습니다. 물론, f(x)-1=x^3일수도 있구요.
*) 여기서 중요한 것. "닿는 형태" -> 2차, 4차 등의 짝수차항 다항식을 포함
ex) f(x)=x^2(x-2)^2
"뚫고 지나가는 형태" -> 1차, 3차 등의 홀수차항 다항식
ex) f(x)=x(x-1)^3
보통 수능은 3차, 심해봤자 4차함수가 나오는 점을 감안하시구... 왜 그런가 궁금하면 직접 그래프를 그려보세요.(네이버에 그래프 그리는 프로그램 쳐서 나오는것 하나 받아서 수식 입력하세요)
극점 2개인 것은 판별한다기 보단, 위에서 방정식을 만들어서 그래프를 그리다보면 자연스럽게 알수 있는 부분입니다. 다로 팁을 드리기가 애매하네요잉...
3번맞나요 ? 귓방망이님 책출간언제하시나용?ㅠ
아직 인쇄중입니다. 생각보다 오래걸리네요ㅠㅠ 기다려주신만큼 좋은 문제질로 보답하겠습니다^^
3번 맞나요??
정답입니다.^^
5번이 아닌가요? 그럼... 3번인가보네요...
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
ㄷ이 조금만 생각을 더했으면 1,2개 였을수도 있다는 생각을 못했네요 ㅋ 문제질 좋으시네요!
분수식의 극한이 극한값을 가진다는 사실에서 분모가 0으로 수렴하므로 분자도 0으로 수렴합니다.
따라서 ㄱ은 옳은 보기입니다.
또한 로피탈의 정리에 의해 f`(1)=0이고 f(x)는 삼차항의 계수가 1인 삼차함수이므로 보기 ㄱ과 함께 정리하면
f(x)=x^3-x^2-x+c입니다. (단, c는 임의의 상수)
따라서 ㄴ도 옳은 보기입니다.
그리고 f(x)는 x=-1/3일 때 극댓값을 가지므로 f(-1/3)=c+5/27로
f(x)가 세 개의 실근을 가질 조건은 c>-5/27입니다. 따라서 ㄷ은 틀린 보기가 됩니다.
그러므로 정답은 3번 ㄱ,ㄴ이 됩니다.
답은 3번!!
3번인가요??