산수칼럼)내가 구해야 하는 답이 무엇잉교?-문제 속에 답이 있다---6평-1
안녕하세여 오르비여러분~
수능이 끝나고 벌써 일주일이 넘었네요.....
좀 많이 뒷북인 감이 없자나 있지만 보닌이 심심한 관계로 수학에 관해 글을 좀 끄적여보려합니다.
일단 필자 소개를 좀 하자면 작년 수능이 지진으로 미뤄지고 나서 심심해 눈팅하다 세계사 자작문제로 데뷔한 중2병 오덕아싸입니다 ㅎㅎ
여러분들은 들어오시기 이전에 제목을 보시고 스스로 "뭐 저런 진부한 소리를 지껄이는 Q.T가 다있누"하고 들어오셨을지도 모르겠으나 확실한건, 최상위의 그들은 바로 이러한 코드 내에서 문제를 풀어나간다는 것입니다.
자기 자랑을 하려는건 아닙니다. 다만 이 글을 읽으신 후 자신이 그동안 어떤 방식으로 문제를 대했는지에 대한 간단한 반성 및 고찰의 시간이 이루어졌으면 하는 바람입니다~
참고로 자세한 풀이는 하지 않을것입니다. 어디까지나 이 글의 목적은 수학 문제를 대할 때의 태도와 그 논리흐름에 관련된 것이니까요. 그래봤자 저는 문돌이입니다 흐규
-------------------------------------------------------------------------------------------------------------------------------
1)29번
일단 문제를 좀 봅시다.
대충 문제를 훑으셨으리라 생각합니다.
이 문제는 우리 문돌이들을 6평때 충격에 빠뜨렸던 문제로 유명하죠... 지금부터 그 이유를 알아보도록 하겠습니다.
우선 우리가 구해야 하는 정답을 알기 위해선 a,b,c의 정확한 값을 알아야 한다는 것을 알 수 있습니다.
즉 함수 식을 구해야 한다는 뜻이죠.
그럼 이제 우리가 알 수 있는 것들(조건)을 좀 봅시다.
1)함수 F(x)는 x=1을 기준으로 2개의 함수꼴로 나타나는군요
2)음.. 연속이네요
3)오.. 역함수도 가집니다.
4)주어진 함수와 역함수가 3점에서만 만납니다.
5)게다가 그 점의 x좌표까지 알려줬네요...(-1, 1, 2)
그럼 찾은 조건을 가지고 우린 생각을 해야합니다.
우리의 최종목표는 함수f의 정체를 밝히는것이죠.
그렇다면 과연, 내가 찾은 조건은 주어진 함수를 완성시키기에 충분한가?
1.조건 1)과 2)를 가지고 식 하나를 뽑아낼 수 있습니다. 우리는 연속이 뭔지 알기 때문입니다.
2.조건 3)만 보고서 우리는 두 그래프의 개형이 떠올라야합니다. 죽을때까지 1번:증가만 하거나//2번:감소만 하거나
3.조건 4)를 보고 확신할 수 있어야합니다. 아하! 이 그래프는 감소만 하는구나!
cf1)증가 그래프라면 무조건 함수와 그 역함수의 교점은 y=x선상에서만 만납니다. 따라서 1.과 2.에서 추론한 것과 같이 그래프를 그려나가면 다음과 같은 케이스에 봉착합니다.
3-1.에... 한점에서밖에 안만나는데?
3-2.에... ㅈㄴ 많은데?
3-3.에... 두점에서밖에 안만나는데?
대다수의 수험생은 여기서 멘붕이 옵니다. ㅅㅂ 문제 잘못냈네 ㅋㅋ 이거 이의제기해야징~!
cf2)그렇다면 감소함수 그래프는 언제 만나는데??
첫번째: y=x선상에서 만난다.(자명합니다 ㅎ)
두번째: y=x대칭인 점에서(...!)만난다.
애초에 역함수 자체가 y=x대칭인 함수이죠.... 이것만 알고 있었어도 y=x선상 위에서 만나는 점뿐만 아니라 바로 두번째 조건도 생각을 했을것입니다... 많은 분들이 이 점을 놓쳤죠
다시 돌아가서...
4. 그럼 이제 그래프 차원을 넘어서 식 차원의 추론까지도 가능합니다.
f의 그래프는 y=x와의 교점이 하나여야만 합니다. 또 y=x 그래프의 대칭인 점이 한 쌍, 즉 두 점이여야 하죠. 이런 식으로 도합 세점에서 f와 f의 역함수가 만난다는 걸 알 수 있죠.
사실 그 뒤의 과정은 생략하도록 하겠습니다. 계산을 보여드릴려고 이 글을 쓴것이 아니기때문이죠.
제가 6평 29번 문제를 들고와서 여러분에게 보여드린 목적은 다음과 같습니다.
첫번째. 내가 무얼 구해야하나
문제풀이에 있어서 목적의식을 가져야 한다는 것입니다.
두번째. 내가 알고 있는게 무엇인가.
아는 걸(조건) 가지고 문제를 풀어야합니다. 모르는 거 백날 찾아봤자 그 문제 푸는데 쓸데없습니다.
세번째. 아는 걸 가지고 어떤 과정으로 수립된 목표를 달성할 것인가
세번째의 핵심은 누가 뭐래도 대충 끄적거리지 말자(=쓸데없는 삽질하지 말자)입니다. 무의미한 삽질을 줄이는 것이야말로 수학문제 푸는데 있어서의 미적 아름다움이니까요 ㅎ
-------------------------------------------------------------------------------------------------------------------------------
사실 첫 수학 칼럼이라 제가 전달해드리고 싶은 점이 잘 전달되었는지 모르겠네요...
제가 전달해드리고 싶은 골자는 저어기 위에 마지막 3개가 대부분 공통 코드로서 수능 문제풀이가 작용된다는 것을 보여드리고 싶은데... 일단 69평은 킬러 3문제(21 29 30)만 하고 넘어갈 예정이긴 합니다만 아무래도 이번 수능 나형은 비킬러도 난이도가 올라왔다는 평이 여론이어서 18번부터 좀 건드려볼까,,,싶기도 한데... 이런속도로는 무리이지 않을까...랄까?
여튼 저도 심심해서 쓴것이니만큼 모쪼록 재미로 읽어주시면 좋겠네요 ㅎㅎ
6평 21번하고 30번은 오늘 올라가긴 힘들거 같고 내일즈음에 올라갈것같습니다 ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현우진의 드릴, 드크북 김종익 파이널 모의고사, 잘되는 기출 삼극사기 현돌 실개완...
-
여기 실채후에도 잘 풀렸으면 좋겠다..
-
저녁 먹어야지...
-
ㅁㅌㅊ?
-
술 안먹엇는데;;
-
친구논술구경옴
-
뭐 친구? 0
-
질문해줌 11
-
화학1난민인데 물1는 중3때 학원다닐때 하지말라는 소리 들었을정도로 노재능 생명도...
-
평가원 #~#
-
이대로간헐적단식
-
못 가르치는 교수님은 똑같이 2시간인데 너무 오래 걸림 심지어 아직도 안 끝남 아...
-
와 이정환 1
두각 홈페이지에 프로필 사진 미쳤네 너무 잘생겼다 샤프해 보이고
-
5-8-7된거 하나 있고 계속 2칸 ㅇㅈㄹ 하다가 (텔그선 50~60진동) 4칸으로 바뀐거 있음
-
평균깎아먹어서울었어
-
07현역 국수탐(언매미적화2지2) 다 과외로 하는게 더 안정적일까요?
-
갤럭시 A시리즈 옛날에 나온거 아무거나 살까요 커뮤앱, 유튜브, 인터넷 버퍼링걸리는...
-
난 intp임 7
ㅇ
-
집에 유물 있음 1
이원준 덕질하다가 어디 건너건너서 구함
-
2칸도써볼만함 4
안될거같은4칸보다 될거같은2칸이더잘붙음
-
실화냐...
-
그런 거 같음
-
Intp인데 3
걍 말을 안 함
-
이제 드릴은 공통미적만 출시하는 걸로 했나요?
-
수학땜에 서강은 안될거 아는데 성대나 한양대 과 상관없이라도 절대 안될까요.....
-
태평양전쟁에서 일본군이 놓친 승리의 기회들에 대해 토론함
-
양심 없는 거 알지만 붙으면 좋겠다
-
이거 옮김?? 1
난 아님 여자 05년생 현재 1학년 인하대 어문->숭실대 어문
-
그렇다고 735 일케써도 게이임뇨 6칸 이상써도 게이임뇨
-
퇴근 4
-
수능날 이야기) 님들 저 삼반수 하는거 진짜 오바임? 2
진짜 내 만족하는 정도가 그리 높지도 않고 광명상 한서삼 만 가도 만족함 진짜...
-
구라가 아니라 진짜라서 포스터로 가려야 하는데 둘 중에 뭐가 나음
-
허거거걱
-
얘는 대체 뭔 새끼지 이런느낌으로 볼거같은데 유머도 재미없고 걍 글자체가 재능이...
-
지금 1등도 3칸 뜨는데
-
cc면 그거 반영해서 점수 보여준거? 칸수랑
-
한양 인터칼리지 3
냥대에서 진학보다 텔그가 짜게주는 유일한 과인듯
-
디파잉 그래비티 나올 때 전율이
-
투데이 왜이러지 11
다시 옯창의 삶을 살게 되,,,~~~~~
-
모 약대 근황 7
1등 3칸
-
영어평균 2뜨는데 이명학 션티 조정식중 뭐 들을까요?
-
어차피 아무리 스나시도해도 안될거 명예롭게 죽을게...
-
내신반영에서 혹시 모르니 틀린과목 하나만 다시 응시할까요? 생윤 마킹 잘못해서 만점놓쳤음..
-
지1 어떤지 물어봤는데 안 알려주네요 ㅋㅋ 접수자 수랑 응시자 수 비교해보려고 했는데... 까비
-
개열받는데 7
애가 아프니깐 머라고 못하겠뇨..
-
진짜개심심하네 6
할게없음뇨
-
평백 87인데 영어 4라 국숭도 힘들어보임..
좋은글추
흠~ 하지만 아무도 관심이 없는걸...
홍보합시닷
흠.....
ㄷㄷ 혹시 어떻게 공부하셨나요??
아 안녕하세여~ 전 기출분석이 수학공부에 있어서 가장 중요한 공부라고 생각합니다! 그래서 실제로 그렇게 해왔고.... 흠 혹시 더 자세한 설명 원하시면 쪽지로 해드릴수 있을까요?? 여기선 추상적인 말밖에 못해드릴거같아요