기출과 같이보면 좋은 문제-(1)
나름 괜찮다 생각했지만...공모 팡탈한...ㅜㅅㅜ
26가능할까요...앞으로 이런것 자주 올릴게요
윗 문제 추가조건 (1
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄱㄴ
-
들어가기 전에. 니가 누군데 정시를 해라마라냐? >> 수능 끝나고 반(5명...
-
극지성 피부도 이제 기름종이 많이 안 싸도 됨 ㅎㅎ 근데 주말에 기름종이 세 팩...
-
이미 성대 공학계열이여서 안되면 복학하려구요 ..
-
(근데 그럼 춥고 우울한거 아닌가)
-
ㅇㅇ
-
오르비언들 사랑해 28
너무좋아다들
-
우산도 안 가져 왔는데..
-
와 입김 나오네 2
이거 진짜에요?
-
안녕하세요. 피오르에듀 호두 컨설턴트입니다. (감자1호와 동일인물 아님) 수능이...
-
이건 공감이 아니라 인기의 문제같은데 인기인처럼보일라면
-
이상해 다들
-
수능 때 도파민 다 분출했나 1주 넘게 아무런 느낌이 없어서 금딸 중이다가 오늘...
-
ㅇㅈ 14
형 잘 먹을게요..!! 감사합니다.!! 다들 맛점하세요~~~
-
나 여친 생김 10
뻥이에요 근데 왜 들어옴?
-
하...... ㅅㅂ이
-
삼필사선 3
이게 맞음 아무튼 맞음
-
힝구
-
하냥대 융합전자공학…..…….꼭 갈끄야 흑흑 ㅠㅠㅠㅠㅠㅠ
-
아니면 민초는 비문명인가?
-
음 12
나가기 귀찮당
-
12시 반에 학교 끝나고 집 갈 때 후배들의 부러운 눈빛을 받으면 ㅈㄴ 짜릿했음
-
엔비디아 ㅇㅇ 물론 분할매수로
-
only 문디컬인데 올해는 확사고정 지방한 보고 확통한건데 내년에 확통선발인원...
-
지2잼씀? 5
-
백분위랑 표점이 훨씬 중요한데 등급이 먼가 직관적이어서 기분에 영향이 더 큰듯
-
오수했는데 국어 1등급한번을 못받아보네.. 들은 슨상만 김상훈 김승리 강민철 빅광일...
-
실질 등급을 측정하기 위한 제도로 n등급제가 기능하려면 아무래도 현재의 7~9등급에...
-
zZ 10
-
흐흐흐
-
잠심맛있게먹어라 4
ㅇㅇ
-
한양대 높공이라 하면 대충 어떤 학과가 높공인가요?
-
두각 퀀텀 0
퀀텀 지금 남학생 4과목 마감이라는데 3과목 신청했는데 빠질까요?
-
문득 고3때 성적이 궁금해져서
-
현재 57.0키로
-
하늘색 팔레트님 7
사라지셨어
-
찾습니다
-
집 나간 며느리 못 돌아오게 할려면 어케 해야함?
-
확정은 아닌데 그냥 궁금해져서 아 간데 하게되면 메디컬이 목표라(그렇게 잡아야지...
-
깨달아버렸어요 4
물리1을 할까 물리2를 할까 고민을 하던 제가 바보 같군요 둘다 공부를 하면 되는...
-
기하학…응 기 하학.. 하악..
-
직장다니면서 수능보신분들 보통 언제 퇴사하세요? 정시발표나고해서 2월쯤으로 생각중인데 늦을까봐 ..
-
달걀수저부럽네 0
-
거기서도 누울거지?
-
수능에피를 목표로 했으나 실패하였고 센츄 달고 자기위로 좀 해야겠다
-
얼버기 기상 12
오늘은 고딩때 다녔던 수학학원쌤이 점심사주는 날}~~~~
-
과잠 입고 가야지~
문제는 닥추야
호롤로로 감사합니당
화이팅 ㅎ 저도 문제 만드는 입장에서 이런거 26꼭 해줘야 해요
26 가즈아ㅏㅏ
두번째는 미1인가요? 고퀄의 향기가 폴폴...
아마 이제 문과꺼 맞을거에요! 기출입니당 :)
엌ㅋㅋㅋ 그랫군요. (기출 열심히 안 본자의 쪽팔림?
윽 먼가 위에꺼 풀 수 있을꺼 같은데 못 풀겠다 ㅠㅠ
두번째는 기출인가요 낯익네ㄷ
혹시 의도하신 답이 100인가요?
앗..아니에욤...ㅜㅜ
혹시 어떻게 접근하셨는지 알수 있을까요???
사실 저는 함수 결정이 안된다고 생각해요..
(가)에서 f(0)=0이고 루트(f(x))에서 f(x)이 0 이상이니까 f'(0)=0이라는 거 뽑아내면 (나)에서는 알아낼 게 없는 것 같아요. 케이스가 너무 많아서...
간단한 예시만 들어도
f(x)=x^2(x-1/3)^2
f(x)=x^2(x-2/3)^2
일 때 t가 1 이하면 (나)랑 f(1/2)=1/144를 만족하거든요..
출제자분 풀이를 모르는 관계로 혼자 틀린 풀이를 생각해 봤습니다만..
g'(x)=(e^(루트f(x)) × f'(x))/2루트f(x)에서
분자가 0이 될 때에 주목하면(사실 분모가 0인 것도 무시 못함)
f'(x)=0일 때이므로 g(x)의 극값을 갖는 x값과 f(x)의 극값을 갖는 x값은 같다.
즉 함수 |f(x)-t|가 미분가능하지 않은 점의 개수가 2가 되는 t가 존재할 때를 생각해보면(경우가 너무 많은거같지만)
f(x)=x^2(x-k)^2 정도로 두면 편하겠다. f(1/2)=1/144이면 (1/2-k)^2=1/36인데 (경우가 또 두가지가 나오지만) 그냥.. 1/2-k=1/6이라 하면 k=1/3이다. 따라서 f(-3)=100이다.
음...일단 f에 x^2 이 인수로 들어가느것꺼지 맞습니다!
그때문에 g 함수는 x=0에서 미분불가능한 함수가 되어서 |g-t| 는 t값과 상관없이 적어도 한점에서 항상 미분 불가능합니다.
이에 유념하여 f=x^2(x^2+ax+b)로 설정하여 나머지 계산을 하도록 하는 것이 의도였습니다~
위에도 예시를 올려두었습니다만.. 조건이 부족한 것 같습니다ㅜㅜ
그래프 방금 확인했네요 ㅠㅠ
추가조건으로 t에 관해 더 정보를 줘야겠네요...
오류땜에 귀한시간 버리셨을텐데 죄송합니다ㅠ
아녜요~~ 수능끝나고 이과킬러를 잘 안건드렸었는데, 이번기회에 e^루트(제곱꼴) 들어가 있을때 미분불가능하게끔 만들 수 있다는 것 배워갑니다!
한편으로는 도함수의 연속성이랑 미분가능성까지 복습하게 되어서.. 절대 시간버렸던 건 아니에요~~ 미안해하실 필요 없어요!!
오히려 문제도 올려주시구 감사하단 말씀 드리고싶어요!!
앞으로 또 놀러올테니 이런문제들 많이많이 올려주시면 감사하겠습니다~~
넵!!감사합니다~~ ;)
다음엔 좋은 문제 올릴 수 있도록 노력할게요